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Abstract 

This paper proposes a Bayesian approach to estimate a panel data model with 

unobserved heterogeneous individual effects. Minimal assumptions have been imposed on 

the effect terms. They are allowed to change over time as well as to have any functional 

form since no functional form is imposed on their prior distribution. Bayesian inference 

techniques and MCMC methods are applied to implement the model. Monte Carlo 

experiments are performed to examine the finite-sample performance of this approach and 

have shown that the method proposed is comparable to the recently proposed estimator of 

Kneip, Sickles and Song (2012) (KSS) and dominates a variety of estimators that rely on 

parametric assumptions. In order to illustrate the new method, the Bayesian estimator has 

been applied to the analysis of efficiency trends in the U.S. largest banks using a dataset 

based on the Call Report data from FDIC over the period from 1990 to 2009. It is also 

shown that the monotonicity and curvature constraints implied by economic theory are 

effectively and straightforwardly imposed using this Bayesian approach. 
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1. Introduction 

 The use of panel data methods has proven fruitful to productivity researchers. Many parts 

of the productivity decomposition exercise rely on panel data and with newer and better 

panel data techniques productivity researcher are able to make for more robust and general 

inferences. For an extensive discussion of such estimators and their role in identifying and 

estimating productivity, see Sickles, Hao and Shang (2013). Early literatures primarily rely 

on parametric functional form assumptions on the heterogeneous individual effects. For 

example, Schmidt and Sickles (1984) specified a half-normal distribution for the effects, 

Greene (1990) extended the specification to a two-parameter gamma distribution. In order to 

model the unobserved heterogeneous individual effects of a more general form and to avoid 

the misspecification problem, the work in Park and Simar (1994) and the series of papers of 

Park, Sickles and Simar (1998, 2003, 2007) focused on semiparametric efficient panel data 

estimators under a variety of specifications, including a model in which misspecified 

dynamics may cause the idiosyncratic error to follow autoregressive patterns of various 

forms and the dynamic panel data model.  

   Of course such misspecified dynamics may also be due to individual specific 

heterogeneous dynamic effects; hence, allowing for time variation of the effects is also a 

popular trend. Cornwell, Schmidt and Sickles (1990) extended the basic fixed effects and 

random effects models to allow for time-varying efficiency using a quadratic function of 

time for each cross-sectional unit. Battese and Coelli (1992) considered an exponential 

specification of time-varying firm effects for panel data using a stochastic frontier 

production function. However, both of these time-varying estimators have imposed specific 

parametric assumptions on the time effects. Kneip et al. (2012), on the other hand, treated 

the time-varying heterogeneity nonparametrically. Their approach is based on a factor model, 

where the effects are represented by linear combinations of a small number of unknown 

basis functions with cross-sectional heterogeneous coefficients, i.e. factors and their 

corresponding factor loadings. 

   In this paper, a panel data model with unobserved heterogeneous time-varying effects is 

considered, with individual effects treated as random functions of time. A Bayesian 
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framework is employed to estimate the panel data model. There are several advantages of 

the Bayesian approach. First, following the Bayesian perspective of random coefficient 

models (Swamy, 1970), the model will not subjectively assume a common functional form 

for all the individuals. Swamy and Tavlas (1995) point out that subjective processes may 

vary among individuals and fixed parametric values of the parameters that describe this 

functional relationship may not be well-defined. Secondly, a Bayesian approach may 

circumvent the theoretically complex as well as the computationally intense nature of 

nonparametric or semiparametric regression techniques (Yatchew, 1998) and the need to rely 

on asymptotic theories for the inferences (Koop and Poirier, 2004). Moreover, it becomes 

feasible to impose the monotonicity and other curvature properties implied by economic 

theory to estimate typical production, cost, or distance functions within a Bayesian 

framework without resorting to linear and non-linear programming methods (O’Donnell and 

Coelli, 2005). For example, the Metropolis-Hastings algorithm can be used to impose the 

monotonicity and curvature properties consistent with economic theory.  It is very intuitive 

and efficient and gives Bayesian approaches much to distinguish them as compared to 

frequentist approaches.  

   Bayesian approaches to integrate panel data methods and stochastic frontier analysis 

were first suggested by Van den Broeck, Koop, Osiewalski and Steel (1994), who consider a 

Bayesian approach under the composed error model. Koop, Osiewalski and Steel (1997) has 

used Bayesian methods for both fixed and random effect models; they also applied Gibbs 

sampling to analyze their model. Bayesian numerical integration methods are described in 

Osiewalski and Steel (1998) and used to fully perform the Bayesian analysis of the 

stochastic frontier model using both cross-sectional data and panel data. However, the 

individual effects are assumed to be time-invariant in the papers listed above. This 

assumption can be inappropriate in many settings; for example, in the stochastic frontier 

analysis, the firms’ technical inefficiency levels typically adjust over time. In order to 

address the temporal behavior of individual technical efficiency effects, Tsionas (2006) 

considers a dynamic stochastic frontier model using Bayesian inference, where the 

inefficiency levels are assumed to evolve log-linearly. Our paper, like most papers in the 

literature, will also use the Bayesian integration method and a Markov chain based sampler 
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or Gibbs sampler to provide slope parameter and heterogeneous individual effects inferences. 

By drawing sequentially from a series of conditional posteriors, a sequence of random 

samples can be obtained, which will converge to a draw from the joint posterior distribution. 

A desirable characteristic of the Bayesian analysis in this paper is that no conjugate priors 

are imposed for the individual effects; i.e. we do not require effects to follow a normal prior 

distribution to ensure that the posterior is in the same family of the prior as with the 

conjugate prior assumption imposed in classical Bayesian linear regression model. The prior 

assumption is only imposed on the first-order or second-order difference of the individual 

effects; therefore, this approach can be applied to more general cases with minimal 

smoothness assumption. It will be shown in Section 4 that the Bayesian estimator proposed 

here consistently outperforms some representative parametric as well as nonparametric 

estimators under various scenarios of data generating processes. 

   One of the main criticisms of Bayesian methods lies in its incorporation of the subject 

prior information. However, in this paper, the only prior information is with regard to the 

smoothness parameter of the heterogeneous effect.   

The rest of this paper is organized as follows. Section 2 describes the basic model setup 

and parameter priors. The Bayesian inference procedures are explained in section 3, 

followed by section 4, which presents our Monte Carlo simulations results. The estimation 

of the translog distance function is briefly discussed and the empirical application results of 

the Bayesian estimation are presented in Section 5. The multi-output/multi-input translog 

output distance function is adopted and the monotonicity, quasi-convexity in inputs, 

convexity in outputs properties are discussed and imposed using the Bayesian estimator. The 

new estimator with the Bayesian method to imposing curvature properties is applied to the 

U.S. banking industry. The largest U.S. commercial banks are evaluated for their efficiencies 

of providing intermediation services. Section 6 provides concluding remarks. 

 

2. The Model 

The model in this paper is based on a balanced design with T observations for n 
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individual units. Thus, the observations in the panel can be represented in the form 

( , ),  1,..., ;  1,...,it itY X i n t T  , where the index i denotes the ith individual units, and the 

index t denotes the t th time period.  

A panel data model with heterogeneous time-varying effects is expressed as  

 ' ,  1,..., ; 1,...,it it i itY X t v i n t T  (2.1) 

where itY  is the response variable, itX  is a 1p  vector of explanatory variable,   is a 

1p  vector of parameters, and the unit specific function of time i t  is a nonconstant 

and unknown individual effect. We make the standard assumption for the measurement error 

that 2(0, )itv NID . 

The model can also be written in the form below, 

 '
it it it itY X v  (2.2) 

where it is the time-varying heterogeneity and assumed to be independent across units. This 

assumption is reasonable in many applications; in particular this independence assumption 

can be validated in the scenario where the technical efficiency levels in different firms rely 

mainly on their own heterogeneous factors such as size, CEO’s managerial skills and 

operational structure. 

For the ith individual, the vector-form expression is presented as:  

 ,  1,...,i i i iY X v i n  (2.3) 

where ,  i iY X and i  are vectors of T dimension. 

When applying our model in the field of stochastic frontier analysis, the estimation of 

and inference on the individual effects φi(t) or γit, which represent the time-varying technical 

efficiency levels, will be no less important than the estimation of the slope parameters.  

The difference of our model from those in the literature is that no specific parametric 

form for the unobserved heterogeneous individual effects is imposed, which follows the 

assumption in Kneip et al. (2012). However, we will not resort to the traditional 

nonparametric regression techniques to estimate the model as they did in that paper; instead 

a Markov Chain Monte Carlo method is implemented in the Bayesian inference to estimate 
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the model. This paper can be considered as a generalization of Koop and Poirier (2004) to 

the case of panel data including effects that are individual-specific and time-varying as well. 

Moreover, it does not rely on the conjugate prior formulation for the time varying 

individual-effects since the conjugate prior assumption has been criticized to be too 

subjectively informative.  

   A Bayesian analysis of the panel data model set up above requires a specification of the 

prior distributions over the parameters (γ, β, σ) and computation on the posterior using 

Bayesian learning process: 

 , , | , , , , ( , ; , , )p Y X p l Y X  (2.4) 

The prior of the individual effect γi as expressed below is not strictly assumed to follow a 

normal prior distribution; instead, it is only assumed that the first-order or second-order 

difference of γi follows a normal prior. 

 
1 2 2

1
exp exp

2 2

n i i
Ti

Q
p I Q  (2.5) 

whereQ D D , and D  is the 1T T  matrix whose elements are 1ttD , for t 

=1,…,T1; 1, 1t tD  for all t = 2,…,T and zero otherwise. The information implied by 

this prior is that  𝛾𝑖,𝑡 − 𝛾𝑖,𝑡−1~𝑁(0, 𝜔2) , or 2
1~ 0,

IID
i TD N I . ω is a smoothness 

parameter which stands for the degree of smoothness. ω can be considered as a 

hyperparameter and given beforehand, or it can be assumed to have its own prior, which is 

explained in next session. Given the continuity and first-order differentiability of ( )i t , this 

assumption says that the first derivative of the time-varying function ( )i t in Eq.(2.1) is a 

smooth function of time. The second-derivative smoothness assumption can be an 

alternative, which is implied by 2
, 1 , 22 ~ 0,it i t i t N  or 

2 2
1~ 0,

IID
i TD N I  and (2)' (2)Q D D . 

   A noninformative prior distribution is assumed here for the joint prior distribution of the 

slope parameter β and the unknown variance term σ2 in Eq.(2.6). 

 2 2( , )p      (2.6) 
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or equivalently the prior distribution is uniform on ( , log )  . 

Therefore, with the assumptions on the priors above, we have adopted the following 

form for the joint prior: 

 1 1
1 2 2

1
, , exp exp

2 2

n i i
ni

Q
p I Q  (2.7) 

   According to the model setup in Eq.(2.1) and after a specific dataset is applied, the 

likelihood function under this model is the following expression, 

 
2

1
( , ; , , ) exp{ ( ) '( )}

2

NTl Y X Y X Y X       


       (2.8) 

The likelihood is formed by the product of NT independent disturbance terms which follow 

normal distribution N (0, σ2). 

With Bayes’ Theorem applied, the probability density function is updated with the 

information from the dataset, thus the joint posterior distribution is derived in Eq.(2.9). 

 

1

2

2

1
, , | , , exp{ }

2
1

                           exp{ }
2

nT

n

p Y X Y X Y X

I Q
 (2.9) 

3. Bayesian Inference  

   To proceed with further inference, we need to solve the posterior distribution above in 

Eq.(2.9) analytically; however, this posterior is not of standard form, and taking draws 

directly from it would be problematic. Therefore, Markov Chain Monte Carlo techniques are 

considered to implement the inference for the model. Specifically, Gibbs sampling (also 

called alternating conditional sampling) will be used to perform the Bayesian inference. The 

Gibbs sampler is commonly used under Bayesian inference for multi-dimensional problems 

because of the desirable results that iterative sampling from the conditional distributions of 

the sub-vectors of the parameter vector will lead to a sequence of random draws converging 

to the joint distribution. A general discussion on the use of Gibbs sampling is provided in 

Gelfand and Smith (1990), in which Gibbs sampler is also compared with alternative 

sampling-based algorithms. For more detailed discussion on Gibbs sampling, one can refer 

to Gelman, Carlin, Stern and Rubin (2003). Gibbs sampling can be well-adapted to sampling 
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the posterior distributions here since a collection of conditional posterior distributions are 

easily derived.  

  The Gibbs sampling algorithm used in this paper generates a sequence of random samples 

from the conditional posterior distributions of each sub-vector of the parameters in turn 

conditional on the most recently updated values of all the others, which are the current 

iteration values for components already updated and the previous iteration values for others. 

For example, in iteration t, β(t) is drawn from ( 1) ( 1)( | , )t tp        ,σ(t) is drawn from 

( ) ( 1)( | , )t tp        , and γ(t) is drawn from ( ) ( )( | , )t tp       . This sampling 

process generates a sequence of samples that constitute a Markov Chain, where the 

stationary distribution of that Markov chain is just the desired joint distribution of all the 

parameters.  

 In order to derive the conditional posterior distributions of β, γ and σ, rewrite the 

likelihood function in Eq.(2.8) to the following form. 

 
2

2

1
( | , , ) exp{ ( )'( )}

2
1

exp{ [( )'( ) ( )'( ' )( )]}
2

NT

NT

pY Y X Y X

Y X Y X X X
  (3.1) 

where 
1ˆ X X X Y . 

   The joint posterior can thus be rewritten in the form below: 

 

1

2

2

1
, , | , , exp{ }

2
1

exp{ [( )'( ) ( )'( ' )( )]}
2

nT
np Y X I Q

Y X Y X X X

 (3.2) 

   Thus, the conditional distribution of β follows the multivariate normal distributions with 

mean ˆ  and covariance matrix
12 X X since the following distribution is derived from 

Eq.(3.2). 

 
2

1
| , , , , exp{ ( )'( ' )( )}

2
p Y X X X  (3.3) 

 

 
12ˆ| , , , , | ,  kY X f X X  (3.4) 
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In order to derive the conditional distribution of the individual effect i , rewrite the 

joint posterior distribution in the following way: 

 
1

2 2

1

1 12 2

, , | , ,

1 1
exp{ }

2 2
1 1

exp{ ' }
2 2

nT
n

n nnT
i i i i i i i ii i

p Y X

Y X Y X I Q

Y X Y X Q

 (3.5) 

Therefore, under the assumption that the effect i ’s are independent across individuals, 

the conditional posterior distribution of | , , , , , ,i j j i Y X is the same as that of

| , , , ,i Y X , and it is distributed as a multivariate normal with mean î  and covariance 

matrix V as displayed in Eq.(3.6). The detailed derivation is presented in Appendix A.  

 2 2ˆ| , , , , | ,  i T i iY X f V  (3.6) 

where 2
î i iV y X  and 

12 2
TV Q I  for 1,...,i n . 

   Writing the conditional posterior distribution in the form given by Eq.(3.7), it is clear 

that the sum of the squared residuals over the unobserved variance 

2/Y X Y X  has the a Chi-squared distribution with nT degree of 

freedom as shown in Eq.(3.8). 

 2 2 /2 1
2

1
| , , , , ( ) exp{ }

2
nTp Y X Y X Y X  (3.7) 

 2
2

| , , , , nT

Y X Y X
Y X  (3.8) 

If the smoothing parameter ω is also assumed to follow its own prior instead of being 

treated as constantly, its conditional posterior distribution can also be derived. Supposed

2
2 ~ n
q

, where ,  0n q hyperparameters, the conditional posterior distribution of 2  is 

derived as: 

 1 1 2
2 2

| , , , , ~ | , , ~

n n
i i i ii i

n n

q Q q Q
Y X Y X  (3.9) 

Obviously, the hyperparameters n  and q  control the prior degree of smoothness that is 

imposed upon the it s. Generally, small values of the prior “sum of squares” /q n  
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correspond to smaller values of  and thus a higher degree of smoothness.  

   Alternatively, we can choose the smoothing parameter ω with cross validation under a 

Bayesian context, which is similar to that in a classical nonparametric regression. The basic 

idea of the cross validation method is to leave the data points out one at a time and to choose 

the value of the smoothing parameter, under which the missing value points are best 

predicted, by the remainder of the data points. 

Let , , . The posterior distribution for a specific value of the smoothing 

parameter is | , ; |p Y L Y p . If we omit the block of time observations for 

unit i , we have the posterior | , ; |i i i i ip Y L Y p . Suppose now we have a 

set of draws 
( )

, , 1,...,s
i s S  from | ,i iY . It is easy to compute the posterior means

1
, ,1

S s
i is

S  and, as a result, the cross validation statistic is 

 1
, , , ,1

( ) ( ) ( ) ( )
n

i i i i i i i ii
CV nT y X y X  (3.10) 

The problem is that we do not have draws from | ,i iY  but only from | ,Y . 

However, the posteriors | ,i ip Y  and | ,p Y  should be fairly close. Therefore, 

to produce such draws we use the method of sampling importance resampling (SIR): if a 

sample ( ), 1,...,s s S  from a distribution with kernel density ( )g  is available and if 

the existing sample is resampled with probabilities
( ) ( )

( ) ( )
1

( ) /

( ) /

s s

s S r r
r

f g
W

f g
, for 

1,...,s S , then it can be transformed to a distribution with kernel ( )f , In our context, the 

existing sample from | ,p Y  is transformed to an approximate sample from 

| ,i ip Y  using ( ) ( ) ( ) ( )( ) ( ) ( )
( )2 2

1 1
exp

2 2

s s s ss T s s
s i i i i i i i is
w y X y X Q , 

and 
1

/
S

s s rr
W w w . The size of the resample is set to 20% of the original sample. For 

each specific value of , the posteriors | ,i ip Y  are simulated using SIR for each 

1,...,i n , and the value of  that yields the minimum of ( )CV  is determined. 

A useful byproduct of this approach is that it yields samples ( ) ( ) ( ), ,s s s
i i i , which 

represent all the parameters except one individual block i. These samples and the posteriors 

approximated can be useful when sensitivity analysis with respect to the observations is 
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necessary.   

This paper uses a Gibbs sampler to draw observations from the conditional posteriors 

from Eq.(3.4) to Eq.(3.8) with data augmentation. Draws from these conditional posteriors 

will eventually converge to the joint posterior in Eq.(2.9). Since the conditional posterior 

distribution of β follows the multivariate normal distribution displayed in Eq.(3.4), it will be 

straightforward to sample from it. 

For the individual effects i , sampling is also straightforward since its conditional 

posterior follows a multivariate normal distribution with mean vector î  and covariance 

matrix 2 2V as expressed in Eq.(3.6). 

 Finally, to draw samples from the conditional posterior distribution function for the 

unobserved variance of the measurement error σ term, we have two simple steps. Firstly, we 

can draw samples directly from that of 2/Y X Y X , which is shown 

in Eq.(3.7) to follow a chi-squared distribution with degree of freedom nT. Secondly, assign 

the values of /Y X Y X Chi rnd to 2 , where Chi rnd is the 

generated random variable that follows 2
nT  in the first step. 

4. Monte Carlo Simulations  

To illustrate the model and inspect the finite sample performance of the new estimator 

using the Bayesian estimator with nonparametric individual effects specification (BE 

henceforth), Monte Carlo experiments are carried out in this section. The performance of the 

Bayesian estimator is compared with the parametric time-variant estimator BC, the 

estimators proposed by (Cornwell et al., 1990)- within estimator (CSSW hereafter) and GLS 

estimator(CSSG henceforth)- and the (Kneip et al., 2012) estimator utilizing the 

nonparametric regression techniques (KSS henceforward) based on a factor analysis.  

   Consider the panel data model(2.2), which can be written in the sum form: 

1

p
k

it k it it it
k

Y X v . Samples of size n = 50, 100,200 with T = 20, 50 in a model with 

p = 2 regressors are simulated. In each sample of the Monte Carlo experiments, the 
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regressors itX are randomly drawn from a standard multivariate normal distribution N(0, Ip). 

The disturbance term 2 is randomly independently and identically drawn from N(0, 0.12) .  

The time-varying individual effects are generated by the following DGPs respectively, 

which includes as many different types of parametric forms such as quadratic function of 

time trend, random walk, the functional form capturing significant temporal variations.  

DGP1: 2

0 1 2( / ) ( / )it i i it T t T       

DGP2: 
it i tr   

DGP3:    1 2/ cos 4 / / sin 4 /it i it T t T t T t T       

DGP4:    2

0 1 2 1 2( / ) ( / ) / cos 4 / / sin 4 /it i i i i t i it T t T r t T t T t T t T               

where ( 0,1,2)ij j  is drawn i.i.d. from a standard normal distribution N(0,1), 

. . . (0,1)i i i d N , 
1 , . . . (0,1)t t t tr r i i d N    , ( 1,2) . . . (0,1)ij j i i d N  . 

DGP1 specifies a time-varying effect based on a second-order polynomial of the time 

trend, which is varying across units, DGP1 is considered to model those firms improving 

their efficiencies over the time smoothly; DGP2 utilizes the effect as a random walk process, 

modeling the firms whose efficiency levels are experiencing small ups and downs from time 

to time; DGP3 is considered as the case that large temporal variations are modeled ; DGP 4 

is the general case that integrate all the scenarios in DGP1 through DGP3 in order to provide 

the evidence that the Bayesian Estimator is of expansive use in different types of parametric 

forms.  

In this paper, Gibbs sampling has been implemented using 35,000 iterations with the first 

5,000 samples ignored, the commonly called burn-in periods. The reason for discarding the 

first several periods is that it may take a while to reach the stationary distribution of the 

Markov chain, which is the desired joint distribution. Then we consider only every other 

10th draw to mitigate the impact of autocorrelation since successive samples from a Markov 

chain tend to have correlations to some extent and thus are not independent from each other.  

The simulation results for all the DGPs are displayed as below in Table 1 through Table 

4. The BC time-varying estimator along with CSSW, CSSG, and KSS estimators are 
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displayed for a comparison with the Bayesian Estimator proposed in this paper. For the 

coefficient parameter β in the model, both the estimate and the standard deviation results are 

presented at the lower panel of every table. We will see that throughout the DGPs, the 

estimation results for the slope coefficients β have no significant difference across different 

estimators, however the effects term estimation does vary largely across different estimators. 

For the individual effects γit, MSE results are displayed at the upper panel of each table. The 

normalized MSE formula of the individual effects γit is calculated in(4.1). 

 

2

1 1

2

1 1

( )
( , )

n T

it iti t
it it n T

iti t

R
 

 


 

 



 

 
 (4.1) 

Table 1 : Monte Carlo Simulations for DGP1 

 

 

  DGP1 is consistent with the assumptions for the time-varying effects in the CSS 

model, which assumes that the effects are improving gradually along time. Hence, it is 

expected that the CSSW and CSSG estimators will have better performance compared with 

other estimators. The conjecture turns out to be true and is proved in Table 1. It is also 

shown in Table 1 that the performances of the BE are comparable to those of the CSSW, 

CSSG and KSS estimators in terms of the estimation on individual effects. Under the cases 
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of n = 50, T = 50 and of n = 100, T = 50, the BE provides more accurate estimation on the 

individual effects than the KSS estimator. This implies that the performance of the Bayesian 

Estimator is quite efficient in estimating time-varying effects of the smoothing-curve forms, 

like the second-order polynomials. It is not surprising that the results of the Bayesian 

estimator are much better than those of the BC estimator for all sample sizes. 

 

Table 2: Monte Carlo Simulations for DGP 2 

 

 

 

   DGP2 considers the case where the individual effects are generated by a random walk 

and can take an arbitrary functional form. Therefore, the CSSW and CSSG estimators, which 

rely on the assumption that the individual effects are the quadratic function of the time trend,  

would have much worse performance than in DGP1. The BC estimator is also expected to 

perform poorly on the estimation of the individual effects. However, the BE and KSS 

estimator impose no functional forms on the temporal pattern of the individual effects, and 

thus should be able to approximate arbitrary forms of time-varying effects. The results in 

Table 2 have confirmed our expectation. It is shown that the BE dominantly outperforms the 
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estimators which rely on functional form assumptions and also have better estimation 

performance in terms of MSE of individual effects than the KSS estimator does in any panel 

size combination. 

Table 3: Monte Carlo Simulations for DGP3 

 

   DGP3 is considered to characterize the significant time variations in individual effects. 

This DGP can capture some start-up companies efficiency changing trend, which can be 

largely fluctuate due to their immature management and the high turn-over rate in employees. 

As we can see from Table 3, the performances of our Bayesian Estimator (BE) in the 

estimation on both the slope parameters and the individual effects are comparable to those of 

the KSS estimator. Other estimators, whose effects rely on parametric assumptions of simple 

functional forms, are to a great extent dominated by the BE.  

DGP 4 can be considered a mixed scenario of those from the first three DGPs. It is shown 

in Table 4 that the BE dominantly outperforms the BC, CSSW, and CSSG estimators in terms 

of the MSE of the individual effects. Similar to the case in DGP1 and DGP3, the Bayesian 

Estimator (BE) has comparable performance to the KSS estimator and outperforms it in the 

cases of the combination n =50, T = 50, and n = 100, T = 50, or when n is not considerably 

greater than T.  
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Through all the DGPs, although the performance of the slope parameter estimation is 

reasonably well for all the estimators, those estimators based on simple parametric 

assumptions on the individual effects are not sufficient to provide sound estimation on the 

effects. This is undesirable since the individual effects correspond to the technical efficiencies 

in stochastic frontier analysis and should be drawn on no less attention than the slope 

parameters. Hence, the Bayesian estimator (BE) is an excellent candidate among all the 

estimators in modeling the production or cost frontier.  

 

Table 4: Monte Carlo Simulations for DGP4 

 

 

5. Empirical Application: Efficiency Analysis of U.S. Banking Industry. 

5.1 Empirical Models: 

In this section, the Bayesian approach suggested in this paper will be applied to illustrate 

the temporal change in the efficiency levels of 40 of the top 50 banks in the U.S. ranked by 

their book value of assets. We consider only 40 of these banks due to missing observations 
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and other data anomalies. The empirical model is borrowed from Inanoglu, Jacobs, Liu and 

Sickles (2012), where a suite of econometric models, including time-invariant panel data 

models, time-variant models as well as the quantile regression methods, are utilized to 

examine issues of “too big to fail” in the banking industry. In this paper, we will only 

compare results across different time-varying stochastic frontier panel estimators such as the 

CSS Within and GLS estimators, the BC estimator and the KSS estimator and assess the 

comparability of inferences among them. The estimators we utilize are based on different 

assumptions on the functional form of the time varying effects and provide various 

treatments for the unobserved heterogeneity, but they are all based on Eq.(2.1), which 

characterizes a single output with panel data assuming unobserved individual effects. Here 

ity  is the response variable (e.g. some measure of bank output like loans), it  represents a 

bank specific effect, itx
 

is a vector of exogenous variables and it  is the error term. We 

will estimate second order approximations in logs-the translog specification- to a 

multi-output/multi-input distance function, see Caves, Christensen and Diewert (1982). Let 

the m outputs be exp( )it itY x  and the n inputs exp( )is isX x . Then express the m-output, 

n-input deterministic distance function ( , )OD Y X  as 

 1

1

( , ) 1

j

k

m

it

j

O n

it

k

Y

D Y X

X









 





 (5.1) 

The output-distance function Do(Y,X) allows us to describe the multi-input/multi-output 

production technology without specifying a behavioral objective and it should follow the a 

few properties such as non-decreasing, homogeneous, and convex in Y and non-increasing 

and quasi-convex in X (Battese, Coelli and Rao, 1998).  

   After taking logs and rearranging terms from Eq. (5.1) we have:  

 *

1,

2 1

, 1,..., ; 1,...,
m n

it it j jit k kit it

j k

y y x v i N t T  
 

         (5.2) 

where 
*

, 2,..., 1ln( / )jit j m jit ity Y Y   and the normalization of homogeneity in outputs is 
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applied to satisfy 
1

1
m

j

j




 . 

A Cobb-Douglas specification to the distance function as proposed by (Klein, 1953) can 

be used as a valid first-order approximation. However, we specify the distance function as 

translog since the Cobb-Douglas distance function has been criticized for its assumption of 

separability of outputs and inputs and for incorrect curvature as the production possibility 

frontier is convex instead of concave. The translog function has more advantages such as the 

second-order approximation allowing for more flexibility, proper local curvature in the 

productivity possibility curve, and the separability of outputs and inputs. If the translog 

technology is applied, the distance function will take the following form in Eq.(5.3). 

 

* * *
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2 2 2 1 1 1
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     

 

     

   

   


 (5.3) 

If we denote
* * * *

( 1) ( ( 1)/2) (( 1) /2) ( 1) )[ , , , , ]NT n NT m NT n n NT m m NT m nX x y xx y y xy            , model 

(5.3) can be written in simplicity to the form in Eq.(2.1).  

When the translog distance function is applied, it is natural to consider its monotonicity 

and curvature properties implied by production theory: the output distance is non-decreasing 

in inputs, non-increasing in outputs, quasi-convex in inputs and convex in outputs.  

Elasticities of the output distance function with respect to input and output variables 

after taking the first derivatives are expressed as the following forms. The notations in this 

section follow largely from O’Donnell and Coelli (2005).  
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Monotonicity implies that D to be non-increasing in x such that  

 
ln

0  s 0,   1,2,...,
ln

o o o o
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D D D D
f s p n

x x x x

 
      
 

  (5.6) 
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For D to be non-decreasing in y, we must have the following conditions: 

 
ln

0 0,    2,...,o o o o
j j j

j j j j

D D D D
h r r j m

y y y y

 
      
 

  (5.7) 

The sufficient condition for D to be quasi-convex in x over the non-negative orthant is 

that all the principal minors for the bordered Hessian matrix must be negative. The bordered 

Hessian matrix, which includes the first-derivatives and second-derivatives of D, takes the 

following form: 

 

1

1 11 1
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  (5.8) 

   Each entry of the second-derivatives 
2

( { } )( / )o
pk pk p k p o p k

p k

D
f s s I p k s D x x

x x



    
 

and 𝐼{𝑝 = 𝑘} is an indicator function taking the value 1 if p = k and 0 otherwise. The 

details of the quasi-convexity checking criteria can be found in Lau (1978). 

To ensure the distance function D convexity in output y over the non-negative orthant, 

we must have the following Hessian matrix H is positive semi-definite. 
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m mm
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  (5.9) 

Each entry of the Hessian matrix above 
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With the monotonicity and curvature properties imposed, the joint prior described in 

Eq.(2.9) has become to the following form: 

 

1

2

2

1
, , | , , exp{ }

2
1

                           exp{ } [ ]
2

nT

n j

p Y X Y X Y X

I Q I R
  (5.10) 

The corresponding conditional posteriors becomes to: 

 
12ˆ| , , , , | ,  [ ]k jY X f X X I R   (5.11) 

 2 2ˆ| , , , , , , ~ | , , , , | ,  i j i T i ij i Y X Y X f V   (5.12) 
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 2
2

| , , , , nT

Y X Y X
Y X   (5.13) 

The indicator function [ ]jI R  takes the value 0 when the slope parameter β falls in 

the restricted region or not corresponding to Rj; j = 0, 1. To impose the properties, we need 

to sampling from the truncated multivariate normal distribution described in Eq.(5.11). A 

Metropolis-Hastings algorithm has been applied within the Gibbs Sampling in our 

application to impose the monotonicity and curvature constraints implied by production 

economics theory. A description of the M-H method can be found in (Gelman et al., 2003). 

It is discussed in (O’Donnell and Coelli, 2005) that the M-H algorithm is more efficient 

compared to the rejection algorithm. The detailed algorithm follows mainly from (Griffiths, 

O’Donnell and Cruz, 2000). 

The individual effects are transformed into relative efficiency levels using the standard 

order statistics argument given in Schmidt and Sickles (1984) as  

 1,...exp{ ( ) max ( )}it i i n iTE v t v t   (5.14) 

For the BC estimator, technical efficiency levels can differ but parsimony is achieved by 

assuming that all firms have the same temporal pattern. The temporal pattern is specified as 

 {exp[ ( )]}it iTE t T     (5.15) 

where i  are independent random effects and  describes the temporal change pattern.  

   Clearly the levels of efficiency can vary substantially for the methods that use the order 

statistics (the firm with the largest effect) to benchmark the most efficient firm and thus the 

relative efficiencies of the remaining firms. Typically, this impact is mitigated by data 

trimming but with only 40 firms in our study we decided to avoid doing so in presenting the 

results below. The BC estimator has no such potential drawback. We will consider such 

trimming approaches as we examine our models and results more fully. 

5.2 Data  

The dataset analyzed in this paper is a balanced panel of 40 out of the top 50 U. S. 

commercial banks based on the yearly data of their Book Value of Assets from 1990 through 



21 
 

2009. The panel size is thus 40 by 20. Missing observations and data anomalies reduced the 

sample from 50 to 40 firms. The data is merged on a pro-forma basis wherein the 

non-surviving bank’s data is represented as part of the surviving bank going back in time.  

The three output and six input variables used to estimate the translog output orientated 

distance function are: Real Estate Loans (“REL”), Commercial and Industrial Loans (“CIL”), 

Consumer Loans (“CL”), Premises & Fixed Assets (“PFA”) , Number of Employees 

(“NOE”), Purchased Funds (“PF”), Savings Accounts (“SA”), Certificates of Deposit (“CD”) 

and Demand Deposits (“DD”). Additionally, three types of risk proxies are considered as 

control variables. The three different types of risks include Credit Risk (“CR”), 

approximated by the Gross Charge-off Ratio, Liquidity Risk (“LR”), proxied by Liquidity 

Ratio, and Market Risk (“MR”), proxied by standard deviation of Trading Returns. 

Using the 40 by 20 panel data set, the monotonicity and curvature conditions have been 

checked, and it is found that more than half of the observations have violated the first seven 

monotonicity constraints, more than 90% have violated the last monotonicity constraint, and 

all observations in the data set have violated the curvature constraints. Therefore, in the 

following sub-sections, the estimation results are presented with and without constraints for 

the Bayesian estimators.  

5.3 Empirical Results 

The full estimation results of the first-order and second-order terms are displayed in 

Table 6 in Appendix B. Since our dataset is geometric mean corrected (each of the data 

points have been divided by their geometric sample mean), the second-order term in the 

elasticities expressed in Eq.(5.4) and Eq.(5.5) will diminish to zero when evaluated at the 

geometric mean of the sample. The elasticities estimated using BC, CSSW, CSSG, KSS and 

Bayesian Estimator without imposing constraints (BE0) and Bayesian estimator with 

constraints (BE1) are reported in Table 5. We can see the elasticity in the input variable Fixed 

Assets is varying from -0.0448 (KSS) to -0.1411(BE1) across different time-varying 

estimators; the elasticity estimate in Number of Employees is varying from -0.1518 (BC) to 

-0.2750 (CSSW); that in Purchase Fund is from -0.0570(BE0) to -0.1088(BC); the elasticity 
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in Saving Account varies from -0.1026(CSSW) to -0.3058(BC); the elasticity in Certificate 

of Deposit is from -0.1526(KSS) to -0.2938 (BC); and that in Demand Deposit is from 

-0.0055(CSSW) to -0.0321(KSS). As it is shown, the results are on the same order in 

magnitudes and signs of the elasticity estimates across different models, except that for 

Demand Deposit, where CSSW gives a significantly lower estimate than all the other 

estimators. The KSS estimator suggests a slightly lower returns-to-scale estimate as shown 

in the fourth row in Table 5 since KSS tends to give lower estimates on the Fixed Asset and 

Certificate of Deposit input elasticities than other models, though the estimates are in the 

same order. In addition, all the estimators suggest decreasing returns to scale except BC. 

However, the returns-to-scale estimate suggested by BC is 1.0165, which is not significantly 

different from 1. Given the results from six different estimators, we can say that there is no 

evidence of increasing returns to scales based on the estimation results. For the elasticity 

estimates in output variables, we notice that the estimates are also similar across estimators.  

Table 5: Estimation Results 

(Evaluated at Sample Mean) 

 

 

Although the Bayesian estimator proposed in this paper has produced similar estimates 

for the slopes elasticities, they have variation in the estimation of the temporal pattern of the 

individual effects as it is displayed in Figure 1. The BC estimator provides higher efficiency 

estimates through the time period, while all the other estimators tend to give estimates on 

efficiencies of similar magnitude. In addition, the BC estimator suggests a declining pattern 

in the average of the technical efficiency levels. This is probably due to the substantial 

downturns in the economy and the meltdowns of financial institutions during the recent 

period of the Great Recession. The average of the technical efficiency levels estimated by 
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other time-varying estimators has displayed a turning point in a certain period. Generally, the 

estimators considered here have indicated a consensus decrease in efficiency of the largest 

banks over the last decade.  

 

Figure 1: Temporal Pattern of Changes in Average Efficiencies for all Estimators 

 

   As we can see from Figure 1, the scale of the average technical efficiency levels in the 

largest U.S. banks suggested by BC at 0.7576, much higher than those by the CSSW, CSSG, 

the KSS and the Bayesian estimators. It ranges from around 0.7267 to 0.7866. The temporal 

pattern of BC is linearly decreasing, which is consistent with its assumption on the form of 

the technical efficiencies. The patterns estimated from the CSSW and CSSG estimators have 

both displayed a turning point at around the year 2005. The KSS estimator provides a similar 

pattern as CSSW and CSSG but a mild decreasing trend of the technical efficiencies over the 

recent period. Turning our attention to the estimated temporal pattern of the technical 

efficiencies using the Bayesian estimators with and without constraints, we find that the 

pattern exhibits more variation. For the Bayesian estimator without constraints (BE0), it 

displays an initial slowly increasing pattern in the 1990s and a turning point at around 2001. 

After that, the curve is decreasing more sharply than it is increasing before the turning point 

until 2008. For the Bayesian estimator with constraints (BE1), it displays more variation 
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along time. In the early 1990s, it shows a mild decreasing pattern from 0.5 to 0.4; it then 

displays an increase in efficiency from 1996 to 2002; after that, the decreasing pattern is 

quite similar compared to that shown with BE0.  

   The decreasing trend in efficiency levels at the beginning of 1990s is probably because 

of the increased competitiveness in financial industry due to the deregulations since the 

1980s. After the banks have adjusted to the competition environment, they may gain some 

production efficiency back. The decreasing trend in efficiency levels around 2001 is 

probably due to the Gramm–Leach–Bliley Act (aka the Financial Services Modernization 

Act of 1999) enacted November, 1999. It repealed part of the Glass–Steagall Act of 1933, 

which limited commercial bank securities activities and affiliations between commercial 

banks and securities firms. With the passage of the Gramm–Leach–Bliley Act, commercial 

banks, investment banks, securities firms, and insurance companies were allowed to 

consolidate. The decrease in efficiency started after the GLB was enacted perhaps because 

the financial institutions were taking on more risky activities and less focused on their 

traditional roles as financial intermediaries in the 2000s when the global pool of 

fixed-income securities increased substantially. 

6. Conclusions 

   This paper has proposed a Bayesian approach to treat time-varying heterogeneity in a 

panel data model. This approach does not rely on any parametric assumptions on the prior 

distribution of the individual effects and that it utilizes Markov Chain Monte Carlo methods 

including Gibbs sampling and Metropolis-Hastings algorithm to implement Bayesian 

inference in a panel data setting. Using the Bayesian approach, it is also very intuitive to 

consider the restricted region of the slope parameters under a specific functional form. In 

this paper, monotonicity and curvature properties have been imposed when the translog 

distance function is specified.  

   The Monte Carlo Simulation experiments show that the new Bayesian estimator has 

displayed consistently superior performance under various data generating processes, 

especially compared to the estimators that rely on parametric functional form assumptions. 
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The parametric estimators based on some simple functional form assumption on the effects, 

though allowing for the temporal variations, have the tendency of misspecification on the 

temporal pattern of the individual effects. Hence, their finite sample performance has been 

uniformly dominated by the Bayesian estimator.   

   The new estimator is applied in analyzing the temporal pattern of the technical 

efficiencies of the largest 40 U.S. banks over the last two decades (through the 1990 to 2009). 

It is discovered that the largest banks have experienced a decrease in technical efficiency 

since early 2000, though at a slowing down speed. This can be explained by their tendency 

to taking on more risky activities at the early 2000s.  
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Appendix A: 

1. Detailed Derivation of the conditional posterior distribution of | , , , ,i Y X . 
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2. Derivations of the posterior distribution of the smoothing parameter ω. 

If the smoothing parameter is assumed to follow its the prior distribution: 2
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Therefore, the conditional posterior distribution of ω can be derived through the following.
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Appendix B: 

The Metropolis-Hastings Algorithm 

   Step 0: Draw a starting point β0, such that ( | , , , , ) 0p Y X , from a starting 

distribution ( )op  . The starting distribution can be based on a crude estimate that will vary 

from problem to problem but usually involves in discarding part of the information in the 

target distribution. 

   Step 1: For 0,..,i M , sample a candidate βc using the current value of βi using the 

jump distribution ( , )i cq   .  

   Step 2: Use the candidate value βc to evaluate the monotonicity (Rj = 1), quasi-convexity 

and convexity (Rj = 2). If any violation appears, set ( , ) 0c ir     and jump to Step 4 

directly. 

   Step 3: Calculate the ratio of the kernel density ( )cg  of truncated normal distribution

( | , , , , )p Y X , and let 
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( , ) min( ,1)
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i c
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   Step 4: Generate independent uniform random variable U on the unit interval [0,1], and 

set 
1   ( , )
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   Step 5: Set 1i i   and go back to Step 1. 
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Appendix C: 

Table 6: The Estimation for the Slope Parameters 
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