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Abstract This paper analyzes the provision of banking services—the multi-
output/multi-input technology that is utilized by banks in their role as financial
intermediaries—as well as banks’ relative performance in providing these services.
We focus on the largest financial institutions in the U. S. banking industry. We
examine the extent to which scale efficiencies exist in this subset of banks in part to
address the issue of whether or not there are economic justifications for the notion that
these banks may be “too-big-to-fail.” Our empirical study is based on a newly
developed set data based on Call Reports from the FDIC for the period 1990-2009.
We contribute to the post-financial crisis "too-big-to-fail" debate concerning whether
or not governments should bail-out large institutions under any circumstances, risking
moral hazard, competitive imbalances and systemic risk. Restrictions on the size and
scope of banks may mitigate these problems, but may do so at the cost of reducing
banks' scale efficiencies and international competitiveness. Our study also utilizes a
suite of econometric models and assesses the empirical results by looking at
consensus among the findings from our various econometric treatments and models in
order to provide a robust set of inferences on large scale banking performance and the
extent to which scale economies have been exhausted by these large financial
institutions. The analyses point to a number of conclusions. First, despite rapid growth
over the last 20 years, the largest surviving banks in the U.S. have decreased their
level of efficiency as they took on increasing levels of risk (credit, market and
liquidity). Second, we find no measurable returns to scale across our host of models
and econometric treatments and in fact find negative correlation between bank size
and the efficiency with which the banks take advantage of their scale of operations. In
addition to the broad policy implications of our analysis our paper also provides an
array of econometric techniques, findings from which can be combined to provide a
set of robust consensus-based conclusions that can be a valuable analytical tool for
supervisors and others involved in the regulatory oversight of financial institutions.
Keywords: Banking productivity; panel data models; quantile regression, distance
functions, economies of scale and scope
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1. Introduction

The recent financial crisis has given rise to a reexamination by regulators and
academics of the conventional wisdom regarding the implications of the spectacular
growth of the financial sector of the economy. In the pre-crisis era, there was a
widespread common wisdom that "bigger is better”. The arguments underpinning this
view ranged from potential economies of scale and scope, to a better competitive
stance at the international level. However, in the post-crisis world the common
wisdom has been altered somewhat as large banks have come to be viewed as
problematic for policy makers and regulators, for various reasons. One reason often
given is that economic agents who are insured have the incentive to take on too much
ex ante risk, also known as the moral hazard problem. Second, there is the "too-big-
to-fail" problem, the fear that large and interconnected financial institutions may
become a source of systemic risk if allowed to go out of business, especially in a
"disorderly” fashion (Bernanke, 2009). Support for or against large banking
institutions turns on the central issue of whether or not efficiencies of scale and scope
are economically and statistically significant and are positively associated with bank
size. If they are positively associated with bank size then the expected benefits of the
cost savings generated by increased efficiencies passed on to consumers in terms of
better services or reduced banking service fees are traded off with the expected costs
implicit in the moral hazard and systemic risk arguments. In this paper we attempt to
shed some light on this question through an empirical analysis that investigates the
relationship between measures of the efficiency of a bank's operation on the one hand,
and the size of the institution on the other.

More recently, regulatory features added by the Dodd-Frank Act (DFA)
introduced a variety of new policy levers, including capital surcharges, resolution plan
requirements, consideration of systemic risk effects in mergers which specifically
increased the emphasis on understanding of economies of scale and scope in large
financial firms. That is, DFA requires the review of whether a proposed merger would

lead to greater concentrated risks to financial stability. Regulators have encouraged
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researchers to better understand the social utility of the largest, most complex
financial firms (Tarullo, 2011).

Some elaboration on what we mean by "too-big-to-fail"* (TBTF) banks is also in
order. During times of financial crisis banking supervisors have strong incentives to
forestall the failure of large and highly interconnected financial firms due to the
damage that such an event could pose to both the financial sector as well as the real
economy. Unfortunately, as market participants anticipate that a particular firm may
be protected in this way this has the perverse yet highly rational effect of undermining
market discipline and encouraging excessive risk-taking by the firm. Furthermore, it
establishes economically unjustified incentives for a bank to become larger in order to
reap this benefit. This results in a competitive advantage for such a large bank over
its smaller competitors who may be perceived as lacking this implicit government
safety net. Public sector bailouts are costly and politically unpopular and this issue has
emerged as an enormous problem in the wake of the recent crisis. Therefore, as a
tactical matter the state of the financial system has left supervisors with little choice
but to use government resources to avoid failures of major financial institutions and
accompanying destabilization of the financial sector. However, on a prospective basis
supervisors have been directed to better address this issue through improved
monitoring of systemically critical firms, with a view to preventing excessive risk-
taking, and by strengthening the resilience of the financial system in order to
minimize the consequences of a large firm being unwound.

A series of reforms have been proposed to address these problems. They include
capping the size of banks, limiting the scope of banking activities, subjecting bank
mergers and acquisitions to additional scrutiny, prescribe that banks draft “living wills”
to plan their orderly unwinding, and requiring the federal government to proactively
break up selected banks. These measures are not without their detractors, however.

Feldman (2010), for example, casts doubt on the reforms focusing on size® by arguing

! Feldman argued that “...1 am skeptical that reforms focused on size per se will achieve their stated
purpose of addressing TBTF; | have more confidence in reforms that identify and address features that

produce spillovers in the first place...”



even if such reform could address TBTF, reforms that take aim at bank size directly
might be bad policy because their costs could exceed their benefits. Moreover, the
size of a bank may be positively related to other benefits. Large banks could offer
cost advantages that would ultimately benefit society by taking advantage of scale
economies in their service production processes. Wheelock and Wilson (2012), for
example, concluded that most U.S. banks faced increasing returns to scale using their
highly parameterized local linear estimator of banking services.

However, there may be problems with this perceived wisdom that large banks are
large because of such scale economies for at least three reasons. First, some of the
econometric work on economies of scale for banking, as in Hughes and Mester
(1998), Hughes, Mester and Moon (2001), etc. find such benefits at all sizes of banks.
Hughes and Mester (2008) summarize the extensive research findings in this regard.
Second, we may simply not yet know very much about the presence of scale
economies for today’s unprecedentedly large banks. DeYoung (2010) emphasizes this
point by arguing that the unique nature of today’s large banks makes it difficult to
apply statistical techniques to historical data to divine the extent of scale economies. It
is clear that the financial sector has grown enormously in recent years. The question is
why. Banks indeed contribute to economic output through intermediation and have
performed this economically useful function in many countries for hundreds of years,
but value-added intermediation does not necessarily justify a large banking sector or
banks whose current size is enormous by any historical standards. There are reasons
to think that this sector may have become too big in the sense that too many of
society’s resources are allocated to it and may continue to contribute to a distortion in
rents paid to those employed in the financial sector. Perceptions by creditors of banks
that the government will protect them can lead the sector to grow inefficiently large as
TBTF guarantees attract excessive funding to banks. These creditors understand that
their bank investments are implicitly subsidized by the assurance of government

bailouts should the bank begin to fail. For example, Tracey and Davies (2012) argues



that there exists an “implicit funding subsidy” for TBTF banks?. Another point about
the limits of our knowledge concerning the scale economies of large banks is that
analysts face real challenges in measuring the “output” produced by banks. Since the
banking sector provides loans deposit and liquidity services it is a challenge to ensure
that cross-firm comparisons are made controlling for these various service provisions,
when ray economies of scale for the multi-output banking services technology is
analyzed. Still another point is that the debate about TBTF and scale economies often
presents the two in contradiction, when in fact they may complement one another.
Some activities of a bank such may rely heavily on automation and thus may benefit
from scale economies that enhance that bank’s TBTF status. The average cost of the
large investments on these automated systems could be driven down by the increasing
in the volume of goods and services produced. Such automation-dependent products
and services can generate a substantial portion banking revenues. Hence, greater scale
activity could come with higher TBTF cost. The presence of economies of scale, from
this perspective, suggests that policymakers sharpen their focus on fixing TBTF, see
Feldman (2010).

The question of bank efficiency amongst the leading banking organizations in the
US is important as the banks must to comply with the stress test and capital plan
requirements outlined by the Federal Reserve’s Comprehensive Capital Analysis and
Review (“CCAR”). For estimating the impact of given stress testing scenarios, large
banks have been relying statistical models in order to quantify potential losses. The
problem with this paradigm is that although it captures the social cost element it fails
to capture the potential social benefits of bank scale and scope economies, as banks
generally cannot incorporate these potential gains into their risk models. Our research
contributes to a balanced analysis of this by considering efficiency measures.

Our paper analyzes the provision of banking services—the multi-output/multi-

% They conclude that scale economies appear to increase with bank size for large banks from a standard
model of bank production that does not control for any TBTF funding cost advantage, while using an
adjustment for the price of debt using the implicit funding subsidy they find evidence of constant

returns to scale and possible scale diseconomies for large banks.



input technology that is utilized by banks in their role as financial intermediaries—as
well as banks’ relative performance in providing these services. We focus on large
banks, in particular the largest 50 financial institutions in the U. S. banking industry.
We examine the extent to which scale efficiencies exist in this subset of banks in part
to address the issue of whether or not there are economic justifications for the notion
that these banks may be “too-big-to-fail.” Our empirical study is based on a newly
developed set data based on Call Reports from the FDIC for the period 1990-2009.
We contribute to the post-financial crisis "too-big-to-fail" debate concerning whether
or not governments should bail-out large institutions under any circumstances, risking
moral hazard, competitive imbalances and systemic risk. Restrictions on the size and
scope of banks may mitigate these problems, but may do so at the cost of reducing
banks' scale efficiencies and international competitiveness. Our study also utilizes a
suite of econometric models and assesses the empirical results by looking at
consensus among the findings from our various econometric treatments and models in
order to provide a robust set of inferences on large scale banking performance and the
extent to which scale economies have been exhausted by these large financial
institutions. The analyses point to a number of conclusions. First, despite rapid
growth over the last 20 years, the largest surviving banks in the U.S. have decreased
their level of efficiency as they took on increasing levels of risk (credit, market and
liquidity). Second, we find no measurable returns to scale across our host of models
and econometric treatments and in fact find negative correlation between bank size
and the efficiency with which the banks take advantage of their scale of operations. In
addition to the broad policy implications of our analysis our paper also provides an
array of econometric techniques, findings from which can be combined to provide a
set of robust consensus-based conclusions that can be a valuable analytical tool for
supervisors and others involved in the regulatory oversight of financial institutions.
The preceding section has provided a short discussion addressing previous studies
related to our work. Section 2 describes the econometric models that will be estimated.
In section 3 we provide a description of our data-set. A discussion of our empirical

findings is presented in section 4. Section 5 concludes.



2. Econometric Models

In this section we review our estimating framework. We will estimate second
order approximations in logs (translog) to a multi-output/multi-input distance function,
see Caves, Christensen and Diewert (1982) and Coelli and Perelman (1996). The
models we consider are linear in parameters. As our banking data constitute a
balanced panel of banks and we are interested in a set of robust and consistent
inferences from a wide variety of modeling approaches we consider a number of
different panel data estimators and assess the comparability of inferences from them.
Our many treatments for various forms of unobserved heterogeneity can be motivated
with the following classical model for a single output banking technology estimated

with panel data assuming unobserved bank effects:

Vo =X SB+n+u, i=L.,N;t=1..T 2.1)
Here vy, is the response variable (e.g. some measure of bank output), 7, represents a

bank specific fixed effect, x, is a vector of exogenous variables and u;, is the error

term.

In the classical Fixed Effects (FE) model for panel data, individual unobserved

effects 7, are assumed to be correlated with the regressors X, , while in the classical

it 1
Random Effects (RE) model individual unobserved effects 7, are assumed to be

uncorrelated with the regressors X, . We also consider the Hausman and Taylor (1981)

panel estimator. The H-T estimator distinguishes between regressors that are

uncorrelated with the regressors ( x; ) and regressors that are correlated with the

effects (x2). As we have no time-invariant regressors in our study, the model
becomes:

Vo =X B+ x5 B+ U i=L. N t=1..T (2.2)



We may interpret (2.1) or (2.2) as log-linear regressions, transformed from a Cobb-
Douglas or translog function that is linear in parameters. In what follows we do not
distinguish between the x’s that are or are not allowed to be correlated with the effects
in order to reduce notational complexity. We do, however, make clear what these
variables are in the empirical section. In order to move from a single to the multi-

output technology considered in our empirical work we specify the multi-output

distance function in the following way. Let the m outputs be Y, =exp(y,) and the n
inputs X, =exp(X,) . Then express the m-output, n-input deterministic distance

function D, (Y, X) as a Young index, described in Balk (2008):

m

[Iv

Dy (Y, X)="22 <1 (2.3)

n

[Ix

k=1

The output-distance function D, (Y, X) is non-decreasing, homogeneous, and convex

in Y and non-increasing and quasi-convex in X. After taking logs and rearranging

terms we have:

Vo =+ 7Y e+ D O X Ui i =L Nt =1, T (2.4)
=2 k=1

.....

can be written as

y=Xp+Zn+u (2.5)

Here yeR" stacks the response variables across banks and time, the matrix

Z=1,®i, e R"™" distributes the bank specific fixed effects (or the "incidence

matrix" that identifies N distinct entities in a sample) that are stacked in the vector

1= (1,1,m) €RY, While X =[Xr,, Yurxmy] CONtains both exogenous and

endogenous variables and U = (u, )" e R"" is the stacked vector of error termsu,, .



However, the Cobb-Douglas specification of the distance function (Klein,
1953)has been criticized for its assumption of separability of outputs and inputs and
for incorrect curvature as the production possibility frontier is convex instead of
concave. However, as pointed out by Coelli (2000), the Cobb-Douglas remains a
reasonable and parsimonious first-order local approximation to the true function®. We
also consider the translog output distance function, where the second-order terms
allow for greater flexibility, proper local curvature, and lift the assumed separability
of outputs and inputs. If the translog technology is applied, the distance function takes
the form:

—Yiie =170, +27j y’j(it +1/ 2227j|y’;ity;t +kz5kxkit +1/ 2225kpxkitxpit
=2 ' -1

j=2 1=2 k=1 p=1 (26)

D 0, YiXa + Uy, 1=1. Nit=1..T
j=2 k=1
This can be written in the form of Eq. (2.1). Here X contains the cross-product

terms as well as the own n input m-1 normalized output terms.
X :[XNTxn'yNTx(m—l)'XXNTx(nx(n+l)/2)’y yNTx((m—l)xm/Z)’XyNTx(m—l)xn)] ! the Iatter Of WhICh

appear in their normalized form owing to the homogeneity of the output distance
function.

In the translog specification, our focus should be on the following key derivatives,
which correspond to the input and output elasticities. The derivatives are expressed as

follows in Eq. (2.7) and Eq. (2.8).

S, =0,+ > SpX +2.0,Y;, p=12,..,n (2.7)
k=1 =2

G=7 2 7Y+ 2 0% =2, (2.8)
= pary

2.1 Frontier Estimation Methodology

In this subsection we describe our estimation methodology utilizing the

® Therefore, we estimate the distance function under both Cobb-Douglas and translog specifications.
We will discuss only for the translog distance function, as those for the Cobb-Douglas are qualitatively
comparable. These results are available on request.
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semiparametric efficiency estimators summarized in Sickles (2005). We utilize Eq.

(2.2) and consider cases in which u and (r, x,, x,) are independent but there is a level

of dependency among the effects and the regressors. Eq. (2.1) can be reinterpreted as
a stochastic panel production frontier model introduced by Pitt and Lee (1981) and
Schmidt and Sickles (1984). Although we may be on somewhat solid footing by

invoking a central limit argument to justify a Gaussian assumption on the disturbance

term u,, we may be far less justified in making specific parametric assumptions

concerning the distribution of the 7, term, which in the stochastic frontier efficiency

literature is interpreted as a normalized radial shortfall in a bank’s performance
relative to the best-practice performance it could feasibly attain. While we can be
confident in restricting the class of distributions of the inefficiency term to those that
are one-sided (see the inequality in Eq. (2.3), the heterogeneity terms are intrinsically
latent and unobservable components and we encounter problems regarding
identifiably of these parameters (Ritter and Simar, 1997). The class of additional
models we also use in our analyses are semi-parametric efficient (SPE) estimators and
are well-suited to provide us with robust point estimates and minimum standard errors
when we are unwilling to use parametric assumptions for the distribution of the
heterogeneity terms and their dependency with either all or some of the regressors.
The general approaches to deriving such semiparametric efficient estimators is
discussed at length in Newey (1990) and Pagan and Ullah (1999), as well as in a
series of papers by Park, Sickles and Simar (1998, 2003, 2007). Interested readers can
find the derivations for the SPE panel stochastic frontier estimators we utilize in our
empirical work below in the cited papers. The framework for deriving all of the
estimators is somewhat straightforward and has much in common across the different
stochastic assumptions on which the different SPE are based.

We utilize a particular SPE estimator in our analyses. This estimator is detailed in
Park et al. (1998). We refer to this as the PSS1 estimator and it is an extension of the
estimator introduced in Park and Simar (1994),which assumed that the effects were

assumed to be independent of all of the regressors. We assume in the specification
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(2.2) that the set of regressors x; is conditionally independent of the individual

unobserved random effects 7; given the set of correlated regressors x, ; :

F(7, %, %) = h(77,%,) 9 (X [ X,) (2.9)
Furthermore, it is assumed that 7, depends on X, only through its long-run
movement:
h(77;, X550 )=hw (7, %5 ) P(X ) (2.10)
Here h, (,X%,;) is a nonparametric multivariate density specified using kernel
smoothers. We will discuss our strategy for selection of the variables that are
portioned into x,; and X, .

In addition to the PSS1 SPE estimator, we consider an alternative approach that
allows for time-varying heterogeneity, interpreted in the stochastic frontier literature
as a normalized level of technical efficiency. The approach is parametric.  Battese
and Coelli (1992), henceforth BC, consider a panel stochastic frontier production
function with an exponential specification of time-varying firm effects:

Y, = £ (Xii, B)exp(u, — ;)

(2.11)
1 ={expl—c(t—T)]}7;

where u, ~ NID(0,57) and 7, ~ NID*(0,57) are normal i.i.d. and non-negative
truncated normal i.i.d., respectively. Maximum likelihood estimators of the model
parameters can be derived and mean technical efficiency can be constructed. *
2.2 Quantile Regression

A final class of estimator we consider in our empirical analyses of banking

performance is the panel quantile regression model. The ™ conditional quantile

* Alternatives to the BC specification of time varying heterogeneity, which has the same pattern but
different intercepts for different firms, such as the Cornwell et al. (1990) estimator, required too much
temporal variation in efficiency scores than the sample contained and we were unable to implement this

estimator in our translog specification.
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function of the response y,, , the analog to Eq.(2.1), can be written as:

Q,(z|Z,X)=XpB(r)+Zn+u (2.12)

Note that in model (2.12) the effects B(t) of the covariates X are allowed to depend
upon the quantile t. The vector 1) is intended to capture individual specific sources of
unobserved heterogeneity that are not adequately controlled for by other covariates.
The estimates of the individual specific effects (n’s) are restricted to be invariant with
respect to the quantile but are allowed to be correlated with the x’s as they are
modeled as fixed effects. As pointed out in Galvao (2011), in settings in which the
time series dimension is relatively large allowing quantile specific fixed effects is not
feasible.

Koenker (1984) considered the case in which only the intercept parameter was
permitted to depend upon the quantile and the slope parameters were constrained to
be identical over selected quantiles. The slope parameters are estimated as regression
L-statistics and the individual effects are estimated as discretely weighted L-statistics.
The model we apply in this paper is the quantile regression fixed effects model for

panel data developed in Koenker (2004), which solves the following convex

minimization problem:

K N T

B.)" =argmind> > > v o (v, ~ % B(5) ~12,)} (2.13)

Bn k=1 i=1 t=1

where k indexes the K quantiles{z,,7,,...,7, }, p.(U) 2u(r —1,_,) is a piecewise linear

quantile loss function as defined in Koenker and Bassett Jr (1978), and v, are weights

that control the influence of the quantiles on the parameter estimates. The choice of
the latter are analogous to discreetly weighed L-statistics (Mosteller, 1946), a

common choice of which is Tukey's trimean (Koenker, 1984).

3. Data

The bank sample is from the top 50 banks by book value assets (BVA), as of the
year-end 2008, from quarterly Call Reports. More precisely, we have quarterly data

from 1Q84 to 4Q08, obtained from the “Consolidated Reports of Condition and
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Income for a Bank with Domestic and Foreign Offices - FFIEC 031” regulatory
reports, expressed on a pro-forma basis that go back in time to account for mergers.
In order to illustrate, if a bank in 2008 is the result of a merger in 2008, pre-2008 data
is merged on a pro-forma basis (i.e., the other non-surviving bank’s data will be
represented as part of the surviving bank going back in time.) The rationale behind
this methodology is to create a long historical data-set that controls for survival bias,
and also that does not exhibit a distorted measure of Banks' growth. The Federal
Reserve uses this data in order to estimate risk measurement models, such as the Bank
Charge-off at Risk Model (Frye and Peltz, 2008), which is the basis of risk
dashboards used for centralized bank supervision. While this sample design is not a
common practice amongst academics, this does reflect methodologies used by banks
in calibrating credit risk models, such as those used for Basel Il and for CCAR.®

Table 1 summarizes key variables as of 4Q09, from the Call Reports for the top
nationally chartered banks in the U.S. by total book value of assets (TBVA) at this
time. We display details on the Top 10 out of 50 by TBVA in descending order (JP
Morgan Chase, Bank of America, Citigroup, Wells Fargo, US Bank, PNC, Bank of
N.Y. - Mellon, HSBC, Capital One and SunTrust) and distributional statistics on the
Top 50. The data is extremely skewed in terms of size as measured by TBVA, with the
top 3 in BVA each in excess of the 95th percentile of $1.2 Trillion, and the Top 10
comprising $7.07 Trillion (or 74.6%) out of the $9.5 Trillion total, as compared to
median (average) BVA of $51.7 ($163.3) Billion. There is similar extreme skew by
the value of total banking book loans (TBBL), with the top 4 in TBVA each in excess
of the $558.6 Billion 95th percentile of TBBL, and the Top 10 comprising $3.57
Trillion or (72.8%) out of the $4.91 Trillion total, as compared to median (average)
TBBL of $23.8 ($84.6) Billion. We observe more extreme skew than even BVA in the
value of total market risk exposure (TMRE; or the value of trading assets), with the

top 3 in BVA each in excess of the $43.5 Billion 95th percentile of TMRE, and the

> For more discussion of this issue the use of similar data in models for risk aggregation see Inanoglu

and Jacobs (2009).
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Top 10 comprising $604.2 Billion or (85.8%) out of the $704.6 Billion total, as
compared to median (average) TMRE of $330.6 Million ($12.1 Billion.) Similarly,
total gross charge-offs (TGCO) are skewed toward the largest banks, with the top 3 in
BVA each in excess of the $19.1 Billion 95th percentile of TGCO, and the Top 10
comprising $120.4 Billion (or 76.8%) out of the $156.8 Billion total, as compared to
median (average) TGCO of $538.9 Million ($2.70 Billion.) Finally for the dollar
measures, total cash balances (TCB) are too concentrated in the largest banks, with
the top 3 in BVA each in excess of the $66.9 Billion 95th percentile of TCB, and the
Top 10 comprising $571.0 Billion (or 70.1%) out of the $813.9 Billion total, as
compared to median (average) TCB of $2.20 ($14.0) Billion. Charge-off ratios (CR)
for many of the top 10 are on the high side relative to the center of the distribution, 5
of them significantly above (ranging in 2.87%-5.54%) the median (average) in the
broader sample of 2.16% (2.61%.) There is a similar pattern with respect to liquidity
ratios (LR), with many of the top 10 on the high side relative to the center of the
distribution, 3 of them significantly above (ranging in 13.67%-35.07%) the median
(average) in the broader sample of 4.84% (9.10%.) Figures 1 through 5 represent
several of these measures in time series on from the 1st quarter of 1990 until the 4th

quarter of 2009.

Table 1: Characteristics of Top 50 Banks by Book Value of Assets as of 4Q09

(Call Report Data 1990-2009)

Book Value of |Total Banking Total Market Total Gross Total Cash Charge-off |Liquidity
Bank Assets Book Loans Risk Exposure |Charge-offs Balances Ratio Ratio

J.P. Morgan Chase 1,729.229.350 631,688,237 302,588,946 23,844,737 91.674.644 3.77% 5.30%)
Bank of America 1,673,823.820 017,843,961 61,191,062 34,918,824 124,737,608 3.80% 7.45%)|

= |Citigroup 1,260,928,539 545,657,436 169,314,878 24,167,059 176,956,592 4.43% 14.03%|
& |Wells Fargo & Co. 1,186.814.503 799,503,117 31,773,535 18,265,007 61,976,159 2.28% 5.22%)|
= |U.8. Bancorp 281,498,787 199,572,175 1,041,748 4.110,280 6,243,833 2.06% 2.22%,|
-_i PFNC Financial 260,309,849 160,229,801 2,390,933 3,155,109 £.461.270 1.97% 3.25%)
E Bank of New York Mellon 178,254,069 31,174,546 4,711,000 208,731 62,521,788 0.67% 35.07%)
o |HSBC Holdings PLC 169,141,749 80,228,263 25,709,703 3.439.772 23,123,961 4.29% 13.67%
Capital One Financial Corp.| 165,351,443 87,698,775 2,003,024 4,858,279 8,856,762 3.54% 5.36%)
Suntrust Banks, Inc. 164,340,844 118,468,907 3,402,613 3.397.050 6,394,590 2.87% 3.89%)
Minimum 12,191,463 3,196,000 0 0 11,763 0.00% 0.04%|
5th Percentile 12,580,511 5,589,203 0 23,529 237,534 0.27% 1.63%|

= |25th Percentile 18,373,132 11,277,713 24,916 143,928 942,798 1.07% 3.26%|
= |Median 51,716,360 23,765,439 330,638 538,924 2,204,268 2.16% 4.84%
= |Average 163,315,252 84,617,257 12,147,732 2,702,996 14,033,486 2.61% 9.10%|
E 75th Percentile 115,874,863 56,208,234 1,345,638 2,170,966 10,255,105 3.72% 13.10%|
;;’ 95th Percentile 1,197,931,685 558,562,056 43,545,009 19,101,967 66.894.716 3.79% 31.66%)
g Maximum 1,729.229.350 917,843,961 302,588,946 34,918,824 176,956,592 10.30% 39.72%)
¥ |Standard Deviation 367.723.010 183,704,291 45,879,678 6,509,602 31.426.514 2.10% 9.56%|
Skewness 3.5044 3.5015 5.3558 3.6907 3.6942 1.4616 1.7696
Kurtosis 11.7795 12.1317 31.4164 13.9310 15.1643 2.8857 2.6016
Grand Total 0.472,284.643 4,007.800,925 704,568,436 156,773,793 813,042,199 3.19% 0.30%|




Fig. 1 shows the TBVA across the U.S. largest banks over time, reflecting the
growth in the banking industry overall as well as of the largest banks, with TVBA
increasing smoothly from around just under $6 Trillion in the early 1990's, to a peak
of about $10 Trillion during the recent financial crisis (and declining around $500
Billion in 2009.) Fig. 2 shows the quarterly TBBL from over this period, which shows
a similar trend to TBVA, a secular upward trend of growth (from about $3.5 to nearly
$5 Trillion in 2008), as well cyclicality in the banking book, reflected dips of about
$500 Billion ($1Trillion) in the last year 2009 (in the 1990-1993 period.) In Fig. 3, the
time series of CRs clearly reflects the credit cycle, with previous peaks of 1% and 0.5%
in the 1st two downturn periods, and alarmingly near 2% by the end of 2009. On the
other hand, in Fig. 4 LRs display a markedly different pattern over time as compared
to CRs, a secular decline from around 10% at the beginning of the sample period to
around 4% in early 2007, with little cyclicality along the way, and reaching up of late
to about 9% by the end of the sample period. Finally, in Fig. 5 we see MVaR
displaying yet another different pattern to the other risk measures, stable over time for
most of the sample period (ranging narrowly in about 2 to 4 Billion until middle of
2007), with little cyclicality along as with LR and increasing massively to about 20
Billion in late 2009. In Fig. 6 through Fig. 10 we show the distributions of the 5
measures analyzed Table 1 in across the top 50 banks as of 4Q09. The right skewness

in all of these variables is evident.
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4. Estimation Results

Our specifications of the translog output distance functions are based on the
intermediation interpretation of banking services wherein banks utilize deposits and
other input factors to provide loan services as their outputs, see Sealey and Lindley
(1977). The alternative production approach views deposits as outputs as opposed to
inputs proposed by Baltensperger (1980). Our analyses are based on a quarterly panel
of the top 50 U. S. commercial banks based on their Book Value of Assets. Due to
missing and questionable data entry we use 40 of these banks in our analyses. The
three output and six input variables used to estimate the distance function using both
stochastic frontier analysis and quantile regression are:

RELOAN: Real Estate Loans (“REL”)

CILOAN: Commercial and Industrial Loans (“CIL”)

CONSLOAN: Consumer Loans (“CL")

PREMFXAST: Premises & Fixed Assets (“PFA”)

NUMEMP: Number of Employees (“NOE”)

PRCHFND: Purchased Funds (“PF”)

NONTRNSACC: Savings Accounts (“SA”)

OTHACSC: Certificates of Deposit (“CD”)

TRANSACC: Demand Deposits (“DD”).

The risk proxies are:

CREDIT RISK: Gross Charge-off Ratio (“CR”)

LIQUIDITY RISK: Liquidity Ratio (“LR”)

MARKET RISK: Trading Returns (“MR”).

Anticipating the discussion to follow, the overall conclusion of our empirical
analyses is that the largest surviving banks - in spite of tremendous growth in the last
20 years - have experienced a diminished capacity to provide loan services as they
took on increasing levels of risk. This is reflected in a decline in efficiency since the
early 1990's as implied by the econometric models that allow efficiency levels to vary

temporally. In addition, larger banks have lower scale efficiency levels. There is no
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evidence of scope economies. Finally, there is no evidence of economies of scale for

the large banks in our sample.

The elasticities of six inputs and three outputs are evaluated at the sample mean

of the data points, in Table 2, with the standard errors are reported in the parenthesis.

We utilize a non-parametric bootstrap following Efron and Tibshirani (1986) , which

is implemented through 1,000 iterations where in each run, 40 banks are chosen with

replacement and 80 quarters are chosen with replacement, and the model is re-

estimated. Since our dataset is mean deflated prior to estimating the distance function,

the first derivatives expressed in Eq.(2.7) and Eq.(2.8) will simply be equal to the first

order coefficients when evaluated at the sample mean.

Table 2: The Elasticity Estimates Evaluated at Sample Mean

FE RE FEIV REIV HT PSS1 BC  QR(50%)

PFA -0.106421 -0.101552 -0.090854 -0.081186 -0.104298 -0.099883 -0.108231 -0.112962
(0.061381) (0.072314) (0.074539) (0.072512) (0.084933) (0.067257) (0.077580) (0.075161)

NOE -0.157410 -0.169932 -0.199262 -0.205315 -0.165402 -0.152224 -0.175394 -0.119082
(0.078969) (0.077042) (0.084536) (0.072699) (0.082107) (0.074370) (0.100527) (0.077065)

PF  -0.109061 -0.109938 -0.102603 -0.102844 -0.109438 -0.116145 -0.104109 -0.103919
(0.018319) (0.016935) (0.019157) (0.016127) (0.017617) (0.018744) (0.018934) (0.018073)

SA  -0337090 -0.340373 -0.360875 -0.360481 -0.339450 -0313782 -0.292577 -0.300179
(0.044868) (0.049948) (0.054988) (0.049667) (0.042311) (0.044175) (0.048848) (0.046463)

CD  -0263520 -0.264405 -0260067 -0.259655 -0264453 -0287188 -0.265593 -0.268341
(0.046591) (0.043836) (0.049368) (0.038645) (0.045226) (0.040681) (0.041948) (0.045041)

DD -0.040895 -0.047371 -0.031062 -0.034457 -0.044685 -0.054098 -0.029192 -0.049881
(0.037968) (0.031390) (0.038776) (0.031737) (0.035905) (0.035067) (0.035813) (0.029983)

REL 0651922 0646935 0661281 0.652121 0649391 0617532  0.627761  0.645739
(0.056118) (0.058938) (0.055155) (0.046333) (0.055670) (0.051732) (0.052512) (0.029800)

CIL 0241438 0244996 0238490 0246885 0243126 0256533 0277278 0213102
(0.048278) (0.043994) (0.051052) (0.044855) (0.048043) (0.044523) (0.039660) (0.055811)

CL 0106640 0.108069 0.100229 0.100994 0.107483 0.125935 0.094961 0.141159
(0.056023) (0.060768) (0.062993) (0.056467) (0.051982) (0.055341) (0.056333) (0.029613)

RST 1014397 1033572 1044723 1043940 1027736 1.023319 0.975097 0.956364
(0.094428) (0.029050) (0.107756) (0.033370) (0.070724) (0.084391) (0.043848) (0.059339)

The elasticity estimates shown

in Table 2 are consistent with the monotonicity.

The six inputs elasticities have negative signs, and the three outputs elasticities have

positive signs. Alternatively, all of the input variables (Premises and Fixed Assets,

Number of Employees, Purchased Funds, Savings Accounts, Certificates of Deposit
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and Demand Deposits) contribute positively to the output, albeit vary in magnitude.
Compared with the other inputs, SA and CD have greater impact. NOE is also an
important input source albeit has less impact than SA and CD; while the estimates of
PFA and PF have similar magnitude. DD has the much smaller impact compared to
other inputs.

Across most models, our estimates suggest no evidence on increasing returns to
scale since the numbers are varying closely around 1.

Turning our attention to the controls for risk, which are displayed in the last three
rows in Table 4 and Table 5 in the Appendix, we observe that in all have generally
positive signs on coefficient estimates, which have the interpretation that all else
equal, risk taking activities decrease output, as more risk is detrimental and reduces
the capacity of the banks to make loans. However, it would seem on first inspection
that our proxy for Credit Risk (CR), i.e. the gross charge-off rates, is found to increase
output in some of the models, with the exception the higher quantiles estimation (60th
to 90" percentile displayed in the last four columns in Table 5). However, the
magnitudes of the coefficient estimates are 5 to 10 times smaller than Liquidity Risk
(LR). As LR is proxied by the liquidity ratio (cash balance/total assets) one might one
first blush expect a negative sign on the coefficient since the positive signs indicated
by all of the estimators indicates that increases in the LR reduce the level of
intermediation services provided by the bank. It is clear from our estimates that these
banks are not managing their liquidity optimally, controlling for market and credit risk.

Coefficient estimates on LR and MR are generally positive and significant across
models using both stochastic frontier analysis and quantile regression. The positive
signs on the coefficient estimates indicative that greater LR or MR inhibits output.
The estimates on MR are generally much less substantial across models. These results
regarding LR and MR support the policy argument that banks should be restricted
from engaging in highly risk activities, such as proprietary trading, and encouraged to
maintain an appropriate liquidity ratio. More generally, our results taken in totality
lead to the sensible implication that banks which stray from their core competencies

will provide less intermediation services and should shrink over time.
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In Fig. 11 and Table 5, we summarize the estimation results of the quantile
regression fixed effects model for panel data. We estimate these models in the R
statistical programming language v2.14.0 (R Core Development Team, 2010) using
the quantreg 4.76 package by Koenker (2009), which the authors adapt and extend in
order to produce longitudinal data results as well as to produce more reliable
statistical inference. From the figure below, we can see that the quantile regression
estimates on the elasticities, represented in black lines, are compatible with those from
Fixed Effect model, which are denoted in the red lines. The elasticity estimates are not
varying significantly across quantiles, but the estimates on Liquidity Risks have

displayed a distinctive increasing pattern.®
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Fig. 11: Panel Data Quantile Regression Elasticity Estimates

Economies of scope, displayed in Table 3 below, are constructed following
Hajargasht, Coelli and Rao (2008), who derive the expression for economies of scope

in terms of the derivative of the distance functions utilizing the duality between the

® The linearity of covariate effects across different quantiles is consistent with the standard

interpretation of technical efficiency in the stochastic frontier paradigm as a radial measure.
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cost and input distance functions. The economies of scope between outputs i and j can

be calculated using the derivatives of the output distance function as follows.

1 -1
CW/C =D,D, —DW+DyX[DXX+DXDX 1 Dy 4.1)

Our dataset is centered on the geometric mean of all observations. Results are
essentially the same when we center at the median time period as well. This enables
us to more transparently interpret the translog results. Economies of scope evaluated
at the sample geometric means for the median time period can be calculated following

this formula in Eq.(4.2). A positive sign represents scope diseconomies.

i Vim
D,D,-D,, + DyX[DXX +D,D, T D,, = : - : + (4 2)
~Vm1 0 Y ™ Ym )
on+b, - Sty 2512 +0,-6, - 200,+6, N oty - Sy t6,
517m +91m '” é‘nym +0nm 2é‘né‘l + 5n1 25: + 5nn _5n 5n71 + enl ”' 5n7m + gnm

For the standard errors of the scope economy measures, we bootstrapped 1000
times within our dataset. Based on sample measures, it is suggested that there is no
evidence of economies of scope across all models among the three different types of
loans evaluated at the sample mean point. Our results are consistent with the findings
of Hughes and Mester (1993). They base their analysis on the translog cost dual to
our primal output distance function. We both find no evidence of scale economies for
the largest banks nor significant scope economies. It is not clear that alternative
nonparametric approaches such as the local linear approximations utilized by
Wheelock and Wilson (2012) are directly comparable to our results given their focus
on banks of varying sizes and the substantial differences in number of parameters for
such models. Constructing tests for the regularity conditions of the dual cost function
from such innovative nonparametric approaches is a research issue that requires more

study.
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Table 3: The Scope Economies Estimates

REL-CIL REL-CL CIL-CL
Model Est. S.E. Est. S.E. Est. S.E.
FIX  0.186641 (0.092571) 0.068159 (0.044642) 0.028669 (0.044285)
RND  0.205635 (0.122235) 0.067588 (0.074989) 0.024171 (0.051160)
FIXIV  0.128601 (0.109149) 0.072280 (0.074903) 0.025666 (0.065676)
RNDIV  0.167219 (0.093654) 0.075744 (0.075084) 0.020838 (0.063222)
HT  0.196599 (0.108356) 0.067875 (0.046375) 0.026382 (0.049094)
PSS1  0.108730 (0.140778) 0.152392 (0.225572) -0.013268 (0.055223)
BC  0.113979 (0.186092) 0.210559 (0.100362) -0.020453 (0.052612)

QR(50%) 0.154886 (0.120829) 0.098020 (0.053863) 0.039288 (0.083575)

Fig. 12 below summarizes the results of the stochastic frontier estimation in
terms of average efficiencies across the different estimators in each quarter. Efficiency
levels range between about 0.49 to 0.80 with a downward trend using the BC model,
whose specification requires that the temporal pattern is linear and monotonic and
thus the decline in average efficiency over the sample period from 80% to 75%. This
trend is probably due to the substantial downturns in the recent period of the Great

Recession and the financial meltdown.
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Fig. 12: Estimated Efficiencies using all Stochastic Frontier Models
The relationship between efficiency levels and bank sizes is also explored. From
Fig. 13, we can see that the largest banks do not necessarily have highest technical

efficiencies; instead, , the efficiency levels are fluctuating as bank sizes change.
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Fig. 13: Efficiency Levels and Bank Sizes
We further analyze the relationship between bank sizes and the Output Scale
Efficiency ("OSE"). The derivation of this estimator follows Balk (2001).

Dy (x,y) _ OTE (x,Y)

OSE(x, y) = Di(x,y) OTE!(xY)

(4.3)

where the O'FE;(X, y) is the output efficiency using cone technology (i.e., constant
returns to scale - "CRS".) As we can see in Fig. 14, which plots this OSE versus size
ranking, the scale efficiencies estimated using time-invariant estimators are increasing
with fluctuations as bank sizes decrease (the ranking numbers increase). The scale
efficiency level using BC estimator’, although displays a more even pattern than those
using time-invariant estimator, still suggests that large banks do not necessarily have

higher scale efficiency levels.

" For the BC estimator, we use the average-over-time scale efficiency level.
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Fig. 14: Scale Efficiency Plots using Time-invariant Estimators

5. Conclusion and Directions for Future Research

This study represents a contribution to the recent dialogue that has arisen in the
wake of the recent financial crisis, a reexamination amongst regulators, practitioners
and academicians of the conventional wisdom regarding the implications of the
spectacular growth of the financial sector of the economy. Previously, there was a
widespread belief the "bigger is better”, with arguments underpinning this view
ranging from potential economies of scale and scope, to a better competitive stance at
the international level. We have seen this logic reversed in the post-crisis world to
some degree, as for several reasons large banks have come to be viewed as a source of

trouble and concern for policy makers and regulators.

We have addressed this controversy through an empirical analysis of the
efficiency of U.S. banks with respect to their size and scope. This study utilized a new
data-set of bank history, a panel of financial measures derived from supervisory Call
Reports in the period 1990-2009, from which we construct the variables used in both
the frontier estimation and quantile regression analyses (inputs and outputs, as well as

controls for 3 major risk types - credit, market and liquidity.) In this exercise we have
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been able to develop both policy implications and also evaluate potential analytical

tools for supervisors.

The conclusion of the stochastic frontier estimation is that in spite of growing,
the largest U.S. surviving banks have decreased technical efficiency over the last 20
years. This has occurred as they took on increasing types of risk, and this is reflected
in an overall decline in efficiency since the early 1990's, as implied by the
econometric model that allow this to vary temporally. The estimation results also
revealed no evidence on increasing returns to scale or scope across models. According
to the time-invariant estimators, there is no positive correlation between bank size and
technical efficiencies, and neither exists such a relationship between size and scale
efficiencies. We found that liquidity and market risk are deleterious to efficiency,
which has implications for the argument that banks should be restricted to traditional
banking activities in their zone of competence. The panel quantile regression results
were generally consistent with the stochastic frontier estimation, albeit with estimates
not varying greatly across quantiles. Furthermore, the implied efficiencies here are
uniformly lower in the quantile regressions, than for the other time-invariant frontier

estimators.

This paper has both policy implications and also evaluates various econometric
techniques as potentially valuable analytical tools for supervisors. First, our results
highlight the importance of the prudential supervisory role in controlling the level of
risk in the banking sector, as we have documented that the elevation in risk measures
coupled with the growth of the sector has resulted in declining measures of efficiency,
a result that is robust to several econometric specifications. The policy implication is
that we may want a better capitalized and somewhat smaller banking system, as this is
likely to imply a more efficiently functioning banking industry. Second, the finding
that market and liquidity risk dominate the influence of credit risk implied in the
\olcker Rule debate, that regulators may wish to seriously consider restricting banks
from dangerous activities such as speculative proprietary trading, and rather focus on
their core competency of making loans. There are several fruitful avenues of
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extension for this research program. We may pursue alternative data-sets, such as
other financial service types of firms (e.g., insurers, brokers), or data from other
jurisdictions. We may expand our set of explanatory variables, with alternative
controls (e.g., size, leverage, capitalization), or an expanded set of inputs (e.g., a
measure of technological change.) Finally, we may expand our suite of alternative

models, thereby seeking out further robust tools for the use by supervisors.
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