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Abstract This paper analyzes the provision of banking services—the multi-

output/multi-input technology that is utilized by banks in their role as financial 

intermediaries—as well as banks’ relative performance in providing these services.  

We focus on the largest financial institutions in the U. S. banking industry.  We 

examine the extent to which scale efficiencies exist in this subset of banks in part to 

address the issue of whether or not there are economic justifications for the notion that 

these banks may be “too-big-to-fail.” Our empirical study is based on a newly 

developed set data based on Call Reports from the FDIC for the period 1990-2009. 

We contribute to the post-financial crisis "too-big-to-fail" debate concerning whether 

or not governments should bail-out large institutions under any circumstances, risking 

moral hazard, competitive imbalances and systemic risk. Restrictions on the size and 

scope of banks may mitigate these problems, but may do so at the cost of reducing 

banks' scale efficiencies and international competitiveness. Our study also utilizes a 

suite of econometric models and assesses the empirical results by looking at 

consensus among the findings from our various econometric treatments and models in 

order to provide a robust set of inferences on large scale banking performance and the 

extent to which scale economies have been exhausted by these large financial 

institutions. The analyses point to a number of conclusions. First, despite rapid growth 

over the last 20 years, the largest surviving banks in the U.S. have decreased their 

level of efficiency as they took on increasing levels of risk (credit, market and 

liquidity). Second, we find no measurable returns to scale across our host of models 

and econometric treatments and in fact find negative correlation between bank size 

and the efficiency with which the banks take advantage of their scale of operations. In 

addition to the broad policy implications of our analysis our paper also provides an 

array of econometric techniques, findings from which can be combined to provide a 

set of robust consensus-based conclusions that can be a valuable analytical tool for 

supervisors and others involved in the regulatory oversight of financial institutions. 

Keywords: Banking productivity; panel data models; quantile regression, distance 

functions, economies of scale and scope 

JEL: C14; C21; C23; G28  
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1. Introduction 

The recent financial crisis has given rise to a reexamination by regulators and 

academics of the conventional wisdom regarding the implications of the spectacular 

growth of the financial sector of the economy. In the pre-crisis era, there was a 

widespread common wisdom that "bigger is better". The arguments underpinning this 

view ranged from potential economies of scale and scope, to a better competitive 

stance at the international level. However, in the post-crisis world the common 

wisdom has been altered somewhat as large banks have come to be viewed as 

problematic for policy makers and regulators, for various reasons. One reason often 

given is that economic agents who are insured have the incentive to take on too much 

ex ante risk, also known as the moral hazard problem. Second, there is the "too-big-

to-fail" problem, the fear that large and interconnected financial institutions may 

become a source of systemic risk if allowed to go out of business, especially in a 

"disorderly" fashion (Bernanke, 2009). Support for or against large banking 

institutions turns on the central issue of whether or not efficiencies of scale and scope 

are economically and statistically significant and are positively associated with bank 

size.  If they are positively associated with bank size then the expected benefits of the 

cost savings generated by increased efficiencies passed on to consumers in terms of 

better services or reduced banking service fees are traded off with the expected costs 

implicit in the moral hazard and systemic risk arguments. In this paper we attempt to 

shed some light on this question through an empirical analysis that investigates the 

relationship between measures of the efficiency of a bank's operation on the one hand, 

and the size of the institution on the other. 

More recently, regulatory features added by the Dodd-Frank Act (DFA) 

introduced a variety of new policy levers, including capital surcharges, resolution plan 

requirements, consideration of systemic risk effects in mergers which specifically 

increased the emphasis on understanding of economies of scale and scope in large 

financial firms. That is, DFA requires the review of whether a proposed merger would 

lead to greater concentrated risks to financial stability. Regulators have encouraged 
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researchers to better understand the social utility of the largest, most complex 

financial firms (Tarullo, 2011). 

Some elaboration on what we mean by "too-big-to-fail" (TBTF) banks is also in 

order.  During times of financial crisis banking supervisors have strong incentives to 

forestall the failure of large and highly interconnected financial firms due to the 

damage that such an event could pose to both the financial sector as well as the real 

economy. Unfortunately, as market participants anticipate that a particular firm may 

be protected in this way this has the perverse yet highly rational effect of undermining 

market discipline and encouraging excessive risk-taking by the firm. Furthermore, it 

establishes economically unjustified incentives for a bank to become larger in order to 

reap this benefit.  This results in a competitive advantage for such a large bank over 

its smaller competitors who may be perceived as lacking this implicit government 

safety net. Public sector bailouts are costly and politically unpopular and this issue has 

emerged as an enormous problem in the wake of the recent crisis. Therefore, as a 

tactical matter the state of the financial system has left supervisors with little choice 

but to use government resources to avoid failures of major financial institutions and 

accompanying destabilization of the financial sector. However, on a prospective basis 

supervisors have been directed to better address this issue through improved 

monitoring of systemically critical firms, with a view to preventing excessive risk-

taking, and by strengthening the resilience of the financial system in order to 

minimize the consequences of a large firm being unwound. 

A series of reforms have been proposed to address these problems. They include 

capping the size of banks, limiting the scope of banking activities, subjecting bank 

mergers and acquisitions to additional scrutiny, prescribe that banks draft “living wills” 

to plan their orderly unwinding, and requiring the federal government to proactively 

break up selected banks. These measures are not without their detractors, however. 

Feldman (2010), for example, casts doubt on the reforms focusing on size1 by arguing 
                                                             
1 Feldman argued that “…I am skeptical that reforms focused on size per se will achieve their stated 

purpose of addressing TBTF; I have more confidence in reforms that identify and address features that 

produce spillovers in the first place…” 
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even if such reform could address TBTF, reforms that take aim at bank size directly 

might be bad policy because their costs could exceed their benefits.  Moreover, the 

size of a bank may be positively related to other benefits.  Large banks could offer 

cost advantages that would ultimately benefit society by taking advantage of scale 

economies in their service production processes. Wheelock and Wilson (2012), for 

example, concluded that most U.S. banks faced increasing returns to scale using their 

highly parameterized local linear estimator of banking services. 

However, there may be problems with this perceived wisdom that large banks are 

large because of such scale economies for at least three reasons. First, some of the  

econometric work  on economies of scale for banking, as in Hughes and Mester 

(1998), Hughes, Mester and Moon (2001), etc. find such benefits at all sizes of banks. 

Hughes and Mester (2008) summarize the extensive research findings in this regard. 

Second, we may simply not yet know very much about the presence of scale 

economies for today’s unprecedentedly large banks. DeYoung (2010) emphasizes this 

point by arguing that the unique nature of today’s large banks makes it difficult to 

apply statistical techniques to historical data to divine the extent of scale economies. It 

is clear that the financial sector has grown enormously in recent years. The question is 

why. Banks indeed contribute to economic output through intermediation and have 

performed this economically useful function in many countries for hundreds of years, 

but value-added intermediation does not necessarily justify a large banking sector or 

banks whose current size is enormous by any historical standards.  There are reasons 

to think that this sector may have become too big in the sense that too many of 

society’s resources are allocated to it and may continue to contribute to a distortion in 

rents paid to those employed in the financial sector.  Perceptions by creditors of banks 

that the government will protect them can lead the sector to grow inefficiently large as 

TBTF guarantees attract excessive funding to banks. These creditors understand that 

their bank investments are implicitly subsidized by the assurance of government 

bailouts should the bank begin to fail. For example, Tracey and Davies (2012) argues 
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that there exists an “implicit funding subsidy” for TBTF banks2. Another point about 

the limits of our knowledge concerning the scale economies of large banks is that 

analysts face real challenges in measuring the “output” produced by banks. Since the 

banking sector provides loans deposit and liquidity services it is a challenge to ensure 

that cross-firm comparisons are made controlling for these various service provisions, 

when ray economies of scale for the multi-output banking services technology is 

analyzed. Still another point is that the debate about TBTF and scale economies often 

presents the two in contradiction, when in fact they may complement one another. 

Some activities of a bank such may rely heavily on automation and thus may benefit 

from scale economies that enhance that bank’s TBTF status. The average cost of the 

large investments on these automated systems could be driven down by the increasing 

in the volume of goods and services produced. Such automation-dependent products 

and services can generate a substantial portion banking revenues. Hence, greater scale 

activity could come with higher TBTF cost. The presence of economies of scale, from 

this perspective, suggests that policymakers sharpen their focus on fixing TBTF, see 

Feldman (2010). 

The question of bank efficiency amongst the leading banking organizations in the 

US is important as the banks must to comply with the stress test and capital plan 

requirements outlined by the Federal Reserve’s Comprehensive Capital Analysis and 

Review (“CCAR”).   For estimating the impact of given stress testing scenarios, large 

banks have been relying statistical models in order to quantify potential losses.  The 

problem with this paradigm is that although it captures the social cost element it fails 

to capture the potential social benefits of bank scale and scope economies, as banks 

generally cannot incorporate these potential gains into their risk models.  Our research 

contributes to a balanced analysis of this by considering efficiency measures. 

Our paper analyzes the provision of banking services—the multi-output/multi-

                                                             
2 They conclude that scale economies appear to increase with bank size for large banks from a standard 

model of bank production that does not control for any TBTF funding cost advantage, while using an 

adjustment for the price of debt using the implicit funding subsidy they find evidence of constant 

returns to scale and possible scale diseconomies for large banks. 
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input technology that is utilized by banks in their role as financial intermediaries—as 

well as banks’ relative performance in providing these services.  We focus on large 

banks, in particular the largest 50 financial institutions in the U. S. banking industry.  

We examine the extent to which scale efficiencies exist in this subset of banks in part 

to address the issue of whether or not there are economic justifications for the notion 

that these banks may be “too-big-to-fail.”  Our empirical study is based on a newly 

developed set data based on Call Reports from the FDIC for the period 1990-2009. 

We contribute to the post-financial crisis "too-big-to-fail" debate concerning whether 

or not governments should bail-out large institutions under any circumstances, risking 

moral hazard, competitive imbalances and systemic risk.  Restrictions on the size and 

scope of banks may mitigate these problems, but may do so at the cost of reducing 

banks' scale efficiencies and international competitiveness. Our study also utilizes a 

suite of econometric models and assesses the empirical results by looking at 

consensus among the findings from our various econometric treatments and models in 

order to provide a robust set of inferences on large scale banking performance and the 

extent to which scale economies have been exhausted by these large financial 

institutions. The analyses point to a number of conclusions.  First, despite rapid 

growth over the last 20 years, the largest surviving banks in the U.S. have decreased 

their level of efficiency as they took on increasing levels of risk (credit, market and 

liquidity).  Second, we find no measurable returns to scale across our host of models 

and econometric treatments and in fact find negative correlation between bank size 

and the efficiency with which the banks take advantage of their scale of operations. In 

addition to the broad policy implications of our analysis our paper also provides an 

array of econometric techniques, findings from which can be combined to provide a 

set of robust consensus-based conclusions that can be a valuable analytical tool for 

supervisors and others involved in the regulatory oversight of financial institutions. 

The preceding section has provided a short discussion addressing previous studies 

related to our work. Section 2 describes the econometric models that will be estimated.  

In section 3 we provide a description of our data-set. A discussion of our empirical 

findings is presented in section 4. Section 5 concludes. 
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2. Econometric Models 

In this section we review our estimating framework. We will estimate second 

order approximations in logs (translog) to a multi-output/multi-input distance function, 

see Caves, Christensen and Diewert (1982) and Coelli and Perelman (1996). The 

models we consider are linear in parameters. As our banking data constitute a 

balanced panel of banks and we are interested in a set of robust and consistent 

inferences from a wide variety of modeling approaches we consider a number of 

different panel data estimators and assess the comparability of inferences from them. 

Our many treatments for various forms of unobserved heterogeneity can be motivated 

with the following classical model for a single output banking technology estimated 

with panel data assuming unobserved bank effects: 

       1,..., ;  1,...,it it i ity x u i N t Tβ η= + + = =    (2.1) 

Here ity  is the response variable (e.g. some measure of bank output), iη  represents a 

bank specific fixed effect, x it is a vector of exogenous variables and itu  is the error 

term. 

In the classical Fixed Effects (FE) model for panel data, individual unobserved 

effects iη  are assumed to be correlated with the regressors itx , while in the classical 

Random Effects (RE) model individual unobserved effects iη  are assumed to be 

uncorrelated with the regressors itx . We also consider the Hausman and Taylor (1981) 

panel estimator. The H-T estimator distinguishes between regressors that are 

uncorrelated with the regressors ( 1
itx ) and regressors that are correlated with the 

effects ( 2
itx ).  As we have no time-invariant regressors in our study, the model 

becomes: 

 1 2
1 2      1,..., ;  1,...,it it it i ity x x u i N t Tβ β η= + + + = =  (2.2) 
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We may interpret  (2.1) or (2.2) as log-linear regressions, transformed from a Cobb-

Douglas or translog function that is linear in parameters.  In what follows we do not 

distinguish between the x’s that are or are not allowed to be correlated with the effects 

in order to reduce notational complexity.  We do, however, make clear what these 

variables are in the empirical section.  In order to move from a single to the multi-

output technology considered in our empirical work we specify the multi-output 

distance function in the following way. Let the m outputs be exp( )it itY y=  and the n 

inputs exp( )is isX x= . Then express the m-output, n-input deterministic distance 

function ( , )OD Y X  as a Young index, described in Balk (2008): 

 1

1

( , ) 1

j

k

m

it
j

O n

it
k

Y
D Y X

X

γ

δ

=

=

= ≤
∏

∏
 (2.3) 

The output-distance function ( , )OD Y X  is non-decreasing, homogeneous, and convex 

in Y and non-increasing and quasi-convex in X. After taking logs and rearranging 

terms we have: 

 *
1,

2 1
, 1,..., ; 1,...,

m n

it i j jit k kit it
j k

y y x u i N t Tη γ δ
= =

− = + + + = =∑ ∑  (2.4) 

where *
, 2,..., 1ln( / )jit j m jit ity Y Y= = .  After redefining a few variables the distance function 

can be written as 

 y X Z uβ η= + +  (2.5) 

Here NTy R∈ stacks the response variables across banks and time, the matrix 

NT N
N TZ I i R ×= ⊗ ∈ distributes the bank specific fixed effects (or the "incidence 

matrix" that identifies N distinct entities in a sample) that are stacked in the vector

1 2( , ,..., ) N
N Rη η η η= ∈ , while *

( 1)[ , ]NT n NT mX x y× × −=  contains both exogenous and 

endogenous variables and ( )T NT
itU u R= ∈ is the stacked vector of error terms itu . 
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However, the Cobb-Douglas specification of the distance function (Klein, 

1953)has been criticized for its assumption of separability of outputs and inputs and 

for incorrect curvature as the production possibility frontier is convex instead of 

concave. However, as pointed out by Coelli (2000), the Cobb-Douglas remains a 

reasonable and parsimonious first-order local approximation to the true function3. We 

also consider the translog output distance function, where the second-order terms 

allow for greater flexibility, proper local curvature, and lift the assumed separability 

of outputs and inputs. If the translog technology is applied, the distance function takes 

the form: 

* * *
1

2 2 2 1 1 1

*

2 1

1/ 2 1/ 2

,    1,..., ; 1,...,

m m m n n n

it i j jit jl jit lit k kit kp kit pit
j j l k k p

m n

jk jit kit it
j k

y y y y x x x

y x u i N t T

η γ γ δ δ

θ

= = = = = =

= =

− = + + + +

+ + = =

∑ ∑∑ ∑ ∑∑

∑∑
 (2.6) 

This can be written in the form of Eq. (2.1). Here X contains the cross-product 

terms as well as the own n input m-1 normalized output terms.  

* * * *
( 1) ( ( 1)/2) (( 1) /2) ( 1) )[ , , , , ]NT n NT m NT n n NT m m NT m nX x y xx y y xy× × − × × + × − × × − ×= , the latter of which 

appear in their normalized form owing to the homogeneity of the output distance 

function.  

In the translog specification, our focus should be on the following key derivatives, 

which correspond to the input and output elasticities.  The derivatives are expressed as 

follows in Eq. (2.7) and Eq. (2.8). 

 *

1 2
,   1, 2,...,

n m

p p kp k pj j
k j

s x y p nδ δ θ
= =

= + + =∑ ∑  (2.7) 

 *

2 1
,    2,...,

m n

j j jl j kj k
l k

r y x j mγ γ θ
= =

= + + =∑ ∑  (2.8) 

2.1 Frontier Estimation Methodology 

In this subsection we describe our estimation methodology utilizing the 

                                                             
3 Therefore, we estimate the distance function under both Cobb-Douglas and translog specifications. 
We will discuss only for the translog distance function, as those for the Cobb-Douglas are qualitatively 
comparable.  These results are available on request. 
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semiparametric efficiency estimators summarized in Sickles (2005). We utilize Eq. 

(2.2) and consider cases in which u  and 1 2( , , )x xη  are independent but there is a level 

of dependency among the effects and the regressors. Eq. (2.1) can be reinterpreted as 

a stochastic panel production frontier model introduced by Pitt and Lee (1981) and 

Schmidt and Sickles (1984). Although we may be on somewhat solid footing by 

invoking a central limit argument to justify a Gaussian assumption on the disturbance 

term itu , we may be far less justified in making specific parametric assumptions 

concerning the distribution of the iη  term, which in the stochastic frontier efficiency 

literature is interpreted as a normalized radial shortfall in a bank’s performance 

relative to the best-practice performance it could feasibly attain. While we can be 

confident in restricting the class of distributions of the inefficiency term to those that 

are one-sided (see the inequality in Eq. (2.3), the heterogeneity terms are intrinsically 

latent and unobservable components and we encounter problems regarding 

identifiably of these parameters (Ritter and Simar, 1997). The class of additional 

models we also use in our analyses are semi-parametric efficient (SPE) estimators and 

are well-suited to provide us with robust point estimates and minimum standard errors 

when we are unwilling to use parametric assumptions for the distribution of the 

heterogeneity terms and their dependency with either all or some of the regressors. 

The general approaches to deriving such semiparametric efficient estimators is 

discussed at length in Newey (1990) and Pagan and Ullah (1999), as well as in a 

series of papers by Park, Sickles and Simar (1998, 2003, 2007). Interested readers can 

find the derivations for the SPE panel stochastic frontier estimators we utilize in our 

empirical work below in the cited papers. The framework for deriving all of the 

estimators is somewhat straightforward and has much in common across the different 

stochastic assumptions on which the different SPE are based.  

We utilize a particular SPE estimator in our analyses.  This estimator is detailed in 

Park et al. (1998).  We refer to this as the PSS1 estimator and it is an extension of the 

estimator introduced in Park and Simar (1994),which assumed that the effects were 

assumed to be independent of all of the regressors. We assume in the specification 
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(2.2) that the set of regressors 1,itx  is conditionally independent of the individual 

unobserved random effects iη  given the set of correlated regressors 2,itx : 

 1 2 2 1 2( , , ) ( , ) ( | )f x x h x g x xη η=  (2.9) 

Furthermore, it is assumed that iη depends on 2,itx  only through its long-run 

movement: 

 2, 2, 2,h( , x )=h ( , ) ( )i it M i it itx p xη η  (2.10) 

Here 2,h ( , )M i itxη  is a nonparametric multivariate density specified using kernel 

smoothers.  We will discuss our strategy for selection of the variables that are 

portioned into 1,itx  and 2,itx . 

In addition to the PSS1 SPE estimator, we consider an alternative approach that 

allows for time-varying heterogeneity, interpreted in the stochastic frontier literature 

as a normalized level of technical efficiency.  The approach is parametric.    Battese 

and Coelli (1992), henceforth BC, consider a panel stochastic frontier production 

function with an exponential specification of time-varying firm effects: 

 
( , ) exp( )

{exp[ ( )]}
it it it it

it i

Y f X u
t T

β η
η ς η

= −
= − −

 (2.11) 

where 2 2~ (0, ) and ~ (0, )it u i vu NID NIDσ η σ+ are normal i.i.d. and non-negative 

truncated normal i.i.d., respectively.  Maximum likelihood estimators of the model 

parameters can be derived and mean technical efficiency can be constructed. 4   

2.2 Quantile Regression 

A final class of estimator we consider in our empirical analyses of banking 

performance is the panel quantile regression model. The thτ conditional quantile 

                                                             
4 Alternatives to the BC specification of time varying heterogeneity, which has the same pattern but 

different intercepts for different firms, such as the Cornwell et al. (1990) estimator, required too much 

temporal variation in efficiency scores than the sample contained and we were unable to implement this 

estimator in our translog specification.   
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function of the response ity , the analog to Eq.(2.1), can be written as: 

 ( | , ) ( )yQ Z X X Z uτ β τ η= + +  (2.12) 

Note that in model (2.12) the effects β(τ) of the covariates X are allowed to depend 

upon the quantile τ. The vector η is intended to capture individual specific sources of 

unobserved heterogeneity that are not adequately controlled for by other covariates. 

The estimates of the individual specific effects (η’s) are restricted to be invariant with 

respect to the quantile but are allowed to be correlated with the x’s as they are 

modeled as fixed effects.  As pointed out in Galvao (2011), in settings in which the 

time series dimension  is relatively large allowing quantile specific fixed effects is not 

feasible. 

   Koenker (1984) considered the case in which only the intercept parameter was 

permitted to depend upon the quantile and the slope parameters were constrained to 

be identical over selected quantiles. The slope parameters are estimated as regression 

L-statistics and the individual effects are estimated as discretely weighted L-statistics. 

The model we apply in this paper is the quantile regression fixed effects model for 

panel data developed in Koenker (2004), which solves the following convex 

minimization problem: 

  

, 1 1 1
( , ) arg min{ ( ( ) )}

K N T
T

k it it k i it
k i t

v y x zτ
β η

β η ρ β τ η
= = =

= − −∑∑∑  (2.13) 

where k indexes the K quantiles 1 2{ , ,..., }kτ τ τ , 0( ) ( )uu u Iτρ τ <−  is a piecewise linear 

quantile loss function as defined in Koenker and Bassett Jr (1978), and kv are weights 

that control the influence of the quantiles on the parameter estimates. The choice of 

the latter are analogous to discreetly weighed L-statistics (Mosteller, 1946), a 

common choice of which is Tukey's trimean (Koenker, 1984). 

3. Data 

   The bank sample is from the top 50 banks by book value assets (BVA), as of the 

year-end 2008, from quarterly Call Reports.  More precisely, we have quarterly data 

from 1Q84 to 4Q08, obtained from the “Consolidated Reports of Condition and 
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Income for a Bank with Domestic and Foreign Offices - FFIEC 031” regulatory 

reports, expressed on a pro-forma basis that go back in time to account for mergers.  

In order to illustrate, if a bank in 2008 is the result of a merger in 2008, pre-2008 data 

is merged on a pro-forma basis (i.e., the other non-surviving bank’s data will be 

represented as part of the surviving bank going back in time.)  The rationale behind 

this methodology is to create a long historical data-set that controls for survival bias, 

and also that does not exhibit a distorted measure of Banks' growth.   The Federal 

Reserve uses this data in order to estimate risk measurement models, such as the Bank 

Charge-off at Risk Model (Frye and Peltz, 2008), which is the basis of risk 

dashboards used for centralized bank supervision.  While this sample design is not a 

common practice amongst academics, this does reflect methodologies used by banks 

in calibrating credit risk models, such as those used for Basel II and for CCAR.5 

Table 1 summarizes key variables as of 4Q09, from the Call Reports for the top 

nationally chartered banks in the U.S. by total book value of assets (TBVA) at this 

time. We display details on the Top 10 out of 50 by TBVA in descending order (JP 

Morgan Chase, Bank of America, Citigroup, Wells Fargo, US Bank, PNC, Bank of 

N.Y. - Mellon, HSBC, Capital One and SunTrust) and distributional statistics on the 

Top 50. The data is extremely skewed in terms of size as measured by TBVA, with the 

top 3 in BVA each in excess of the 95th percentile of $1.2 Trillion, and the Top 10 

comprising $7.07 Trillion (or 74.6%) out of the $9.5 Trillion total, as compared to 

median (average) BVA of $51.7 ($163.3) Billion. There is similar extreme skew by 

the value of total banking book loans (TBBL), with the top 4 in TBVA each in excess 

of the $558.6 Billion 95th percentile of TBBL, and the Top 10 comprising $3.57 

Trillion or (72.8%) out of the $4.91 Trillion total, as compared to median (average) 

TBBL of $23.8 ($84.6) Billion. We observe more extreme skew than even BVA in the 

value of total market risk exposure (TMRE; or the value of trading assets), with the 

top 3 in BVA each in excess of the $43.5 Billion 95th percentile of TMRE, and the 

                                                             
5  For more discussion of this issue the use of similar data in models for risk aggregation see Inanoglu 
and Jacobs (2009). 
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Top 10 comprising $604.2 Billion or (85.8%) out of the $704.6 Billion total, as 

compared to median (average) TMRE of $330.6 Million ($12.1 Billion.) Similarly, 

total gross charge-offs (TGCO) are skewed toward the largest banks, with the top 3 in 

BVA each in excess of the $19.1 Billion 95th percentile of TGCO, and the Top 10 

comprising $120.4 Billion (or 76.8%) out of the $156.8 Billion total, as compared to 

median (average) TGCO of $538.9 Million ($2.70 Billion.)  Finally for the dollar 

measures, total cash balances (TCB) are too concentrated in the largest banks, with 

the top 3 in BVA each in excess of the $66.9 Billion 95th percentile of TCB, and the 

Top 10 comprising $571.0 Billion (or 70.1%) out of the $813.9 Billion total, as 

compared to median (average) TCB of $2.20 ($14.0) Billion. Charge-off ratios (CR) 

for many of the top 10 are on the high side relative to the center of the distribution, 5 

of them significantly above (ranging in 2.87%-5.54%) the median (average) in the 

broader sample of 2.16% (2.61%.) There is a similar pattern with respect to liquidity 

ratios (LR), with many of the top 10 on the high side relative to the center of the 

distribution, 3 of them significantly above (ranging in 13.67%-35.07%) the median 

(average) in the broader sample of 4.84% (9.10%.) Figures 1 through 5 represent 

several of these measures in time series on from the 1st quarter of 1990 until the 4th 

quarter of 2009. 

Table 1:  Characteristics of Top 50 Banks by Book Value of Assets as of 4Q09                                                         

(Call Report Data 1990-2009) 
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Fig. 1 shows the TBVA across the U.S. largest banks over time, reflecting the 

growth in the banking industry overall as well as of the largest banks, with TVBA 

increasing smoothly from around just under $6 Trillion in the early 1990's, to a peak 

of about $10 Trillion during the recent financial crisis (and declining around $500 

Billion in 2009.) Fig. 2 shows the quarterly TBBL from over this period, which shows 

a similar trend to TBVA, a secular upward trend of growth (from about $3.5 to nearly 

$5 Trillion in 2008), as well cyclicality in the banking book, reflected dips of about 

$500 Billion ($1Trillion) in the last year 2009 (in the 1990-1993 period.) In Fig. 3, the 

time series of CRs clearly reflects the credit cycle, with previous peaks of 1% and 0.5% 

in the 1st two downturn periods, and alarmingly near 2% by the end of 2009. On the 

other hand, in Fig. 4 LRs display a markedly different pattern over time as compared 

to CRs, a secular decline from around 10% at the beginning of the sample period to 

around 4% in early 2007, with little cyclicality along the way, and reaching up of late 

to about 9% by the end of the sample period. Finally, in Fig. 5 we see MVaR 

displaying yet another different pattern to the other risk measures, stable over time for 

most of the sample period (ranging narrowly in about 2 to 4 Billion until middle of 

2007), with little cyclicality along as with LR and increasing massively to about 20 

Billion in late 2009. In Fig. 6 through Fig. 10 we show the distributions of the 5 

measures analyzed Table 1 in across the top 50 banks as of 4Q09. The right skewness 

in all of these variables is evident. 

 

Fig. 1: Total Book Value of Assets 
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Fig. 2: Total Value of Loans 

 
Fig. 3: Average Ratio of Total Charge-off to Total Value of Loans 

 
Fig. 4: Average Liquidity Ratios for U.S. Largest Banks 
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Fig. 5: Total Market Value-at-Risk 

 

Fig. 6: Distribution of Total Book Value of Assets as of 2009Q4 

 

Fig. 7: Distribution of Total Value of Loans as of 2009Q4 
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Fig. 8: Distribution of Total Charge-off to Total Value of Loan Ratios as of 2009Q4 

 

 

Fig. 9: Distribution of Liquidity Ratios as of 2009Q4 

 

Fig. 10: Distribution of Market Value-at-Risk as of 2009Q4 
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4. Estimation Results 

Our specifications of the translog output distance functions are based on the 

intermediation interpretation of banking services wherein banks utilize deposits and 

other input factors to provide loan services as their outputs, see Sealey and Lindley 

(1977). The alternative production approach views deposits as outputs as opposed to 

inputs proposed by Baltensperger (1980).  Our analyses are based on a quarterly panel 

of the top 50 U. S. commercial banks based on their Book Value of Assets. Due to 

missing and questionable data entry we use 40 of these banks in our analyses. The 

three output and six input variables used to estimate the distance function using both 

stochastic frontier analysis and quantile regression are: 

RELOAN: Real Estate Loans (“REL”) 

CILOAN: Commercial and Industrial Loans (“CIL”) 

CONSLOAN: Consumer Loans (“CL”) 

PREMFXAST: Premises & Fixed Assets (“PFA”) 

NUMEMP: Number of Employees (“NOE”) 

PRCHFND: Purchased Funds (“PF”) 

NONTRNSACC: Savings Accounts (“SA”) 

OTHACC: Certificates of Deposit (“CD”) 

TRANSACC: Demand Deposits (“DD”). 

The risk proxies are: 

CREDIT RISK: Gross Charge-off Ratio (“CR”) 

LIQUIDITY RISK: Liquidity Ratio (“LR”) 

MARKET RISK: Trading Returns (“MR”). 

Anticipating the discussion to follow, the overall conclusion of our empirical 

analyses is that the largest surviving banks - in spite of tremendous growth in the last 

20 years - have experienced a diminished capacity to provide loan services as they 

took on increasing levels of risk. This is reflected in a decline in efficiency since the 

early 1990's as implied by the econometric models that allow efficiency levels to vary 

temporally. In addition, larger banks have lower scale efficiency levels. There is no 
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evidence of scope economies.  Finally, there is no evidence of economies of scale for 

the large banks in our sample. 

   The elasticities of six inputs and three outputs are evaluated at the sample mean 

of the data points, in Table 2, with the standard errors are reported in the parenthesis. 

We utilize a non-parametric bootstrap following Efron and Tibshirani (1986) , which 

is implemented through 1,000 iterations where in each run, 40 banks are chosen with 

replacement and 80 quarters are chosen with replacement, and the model is re-

estimated. Since our dataset is mean deflated prior to estimating the distance function, 

the first derivatives expressed in Eq.(2.7) and Eq.(2.8) will simply be equal to the first 

order coefficients when evaluated at the sample mean. 

Table 2: The Elasticity Estimates Evaluated at Sample Mean 

 

The elasticity estimates shown in Table 2 are consistent with the monotonicity. 

The six inputs elasticities have negative signs, and the three outputs elasticities have 

positive signs. Alternatively, all of the input variables (Premises and Fixed Assets, 

Number of Employees, Purchased Funds, Savings Accounts, Certificates of Deposit 
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and Demand Deposits) contribute positively to the output, albeit vary in magnitude. 

Compared with the other inputs, SA and CD have greater impact. NOE is also an 

important input source albeit has less impact than SA and CD; while the estimates of 

PFA and PF have similar magnitude.  DD has the much smaller impact compared to 

other inputs. 

Across most models, our estimates suggest no evidence on increasing returns to 

scale since the numbers are varying closely around 1.  

Turning our attention to the controls for risk, which are displayed in the last three 

rows in Table 4 and Table 5 in the Appendix, we observe that in all have generally 

positive signs on coefficient estimates, which have the interpretation that all else 

equal, risk taking activities decrease output, as more risk is detrimental and reduces 

the capacity of the banks to make loans. However, it would seem on first inspection 

that our proxy for Credit Risk (CR), i.e. the gross charge-off rates, is found to increase 

output in some of the models, with the exception the higher quantiles estimation (60th 

to 90th percentile displayed in the last four columns in Table 5). However, the 

magnitudes of the coefficient estimates are 5 to 10 times smaller than Liquidity Risk 

(LR).  As LR is proxied by the liquidity ratio (cash balance/total assets) one might one 

first blush expect a negative sign on the coefficient since the positive signs indicated 

by all of the estimators indicates that increases in the LR reduce the level of 

intermediation services provided by the bank.  It is clear from our estimates that these 

banks are not managing their liquidity optimally, controlling for market and credit risk.    

Coefficient estimates on LR and MR are generally positive and significant across 

models using both stochastic frontier analysis and quantile regression. The positive 

signs on the coefficient estimates indicative that greater LR or MR inhibits output. 

The estimates on MR are generally much less substantial across models. These results 

regarding LR and MR support the policy argument that banks should be restricted 

from engaging in highly risk activities, such as proprietary trading, and encouraged to 

maintain an appropriate liquidity ratio. More generally, our results taken in totality 

lead to the sensible implication that banks which stray from their core competencies 

will provide less intermediation services and should shrink over time. 
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In Fig. 11 and Table 5, we summarize the estimation results of the quantile 

regression fixed effects model for panel data. We estimate these models in the R 

statistical programming language v2.14.0 (R Core Development Team, 2010) using 

the quantreg 4.76 package by Koenker (2009), which the authors adapt and extend in 

order to produce longitudinal data results as well as to produce more reliable 

statistical inference. From the figure below, we can see that the quantile regression 

estimates on the elasticities, represented in black lines, are compatible with those from 

Fixed Effect model, which are denoted in the red lines. The elasticity estimates are not 

varying significantly across quantiles, but the estimates on Liquidity Risks have 

displayed a distinctive increasing pattern.6  

 

Fig. 11: Panel Data Quantile Regression Elasticity Estimates 

Economies of scope, displayed in Table 3 below, are constructed following 

Hajargasht, Coelli and Rao (2008), who derive the expression for economies of scope 

in terms of the derivative of the distance functions utilizing the duality between the 

                                                             
6  The linearity of covariate effects across different quantiles is consistent with the standard 

interpretation of technical efficiency in the stochastic frontier paradigm as a radial measure.  
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cost and input distance functions. The economies of scope between outputs i and j can 

be calculated using the derivatives of the output distance function as follows. 

 1/ ' [ ']yy y y yy yx xx x x xyC C D D D D D D D D−= − + +  (4.1) 

Our dataset is centered on the geometric mean of all observations.  Results are 

essentially the same when we center at the median time period as well.  This enables 

us to more transparently interpret the translog results.  Economies of scope evaluated 

at the sample geometric means for the median time period can be calculated following 

this formula in Eq.(4.2).  A positive sign represents scope diseconomies. 
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For the standard errors of the scope economy measures, we bootstrapped 1000 

times within our dataset.  Based on sample measures, it is suggested that there is no 

evidence of economies of scope across all models among the three different types of 

loans evaluated at the sample mean point.  Our results are consistent with the findings 

of Hughes and Mester (1993).  They base their analysis on the translog cost dual to 

our primal output distance function.  We both find no evidence of scale economies for 

the largest banks nor significant scope economies.  It is not clear that alternative 

nonparametric approaches such as the local linear approximations utilized by 

Wheelock and Wilson (2012) are directly comparable to our results given their focus 

on banks of varying sizes and the substantial differences in number of parameters for 

such models.  Constructing tests for the regularity conditions of the dual cost function 

from such innovative nonparametric approaches is a research issue that requires more 

study.     
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Table 3: The Scope Economies Estimates 

 

Fig. 12 below summarizes the results of the stochastic frontier estimation in 

terms of average efficiencies across the different estimators in each quarter. Efficiency 

levels range between about 0.49 to 0.80 with a downward trend using the BC model, 

whose specification requires that the temporal pattern is linear and monotonic and 

thus the decline in average efficiency over the sample period from 80% to 75%. This 

trend is probably due to the substantial downturns in the recent period of the Great 

Recession and the financial meltdown.  

 

Fig. 12: Estimated Efficiencies using all Stochastic Frontier Models 

The relationship between efficiency levels and bank sizes is also explored. From 

Fig. 13, we can see that the largest banks do not necessarily have highest technical 

efficiencies; instead, , the efficiency levels are fluctuating as bank sizes change. 
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Fig. 13: Efficiency Levels and Bank Sizes 

We further analyze the relationship between bank sizes and the Output Scale 

Efficiency ("OSE"). The derivation of this estimator follows Balk (2001). 

 ( , ) ( , )( , )
( , ) ( , )

t t
o o
t t
o o

D x y OTE x yOSE x y
D x y OTE x y

∨ ∨

= =  (4.3) 

where the ( , )t
oOTE x y

∨

is the output efficiency using cone technology (i.e., constant 

returns to scale - "CRS".) As we can see in Fig. 14, which plots this OSE versus size 

ranking, the scale efficiencies estimated using time-invariant estimators are increasing 

with fluctuations as bank sizes decrease (the ranking numbers increase). The scale 

efficiency level using BC estimator7, although displays a more even pattern than those 

using time-invariant estimator, still suggests that large banks do not necessarily have 

higher scale efficiency levels.  

                                                             
7 For the BC estimator, we use the average-over-time scale efficiency level. 
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Fig. 14: Scale Efficiency Plots using Time-invariant Estimators 

5. Conclusion and Directions for Future Research 

This study represents a contribution to the recent dialogue that has arisen in the 

wake of the recent financial crisis, a reexamination amongst regulators, practitioners 

and academicians of the conventional wisdom regarding the implications of the 

spectacular growth of the financial sector of the economy. Previously, there was a 

widespread belief the "bigger is better", with arguments underpinning this view 

ranging from potential economies of scale and scope, to a better competitive stance at 

the international level. We have seen this logic reversed in the post-crisis world to 

some degree, as for several reasons large banks have come to be viewed as a source of 

trouble and concern for policy makers and regulators. 

We have addressed this controversy through an empirical analysis of the 

efficiency of U.S. banks with respect to their size and scope. This study utilized a new 

data-set  of bank history, a panel of financial measures derived from supervisory Call 

Reports in the period 1990-2009, from which we construct the variables used in both 

the frontier estimation and quantile regression analyses (inputs and outputs, as well as 

controls for 3 major risk types - credit, market and liquidity.) In this exercise we have 



28 

 

been able to develop both policy implications and also evaluate potential analytical 

tools for supervisors. 

The conclusion of the stochastic frontier estimation is that in spite of growing, 

the largest U.S. surviving banks have decreased technical efficiency over the last 20 

years. This has occurred as they took on increasing types of risk, and this is reflected 

in an overall decline in efficiency since the early 1990's, as implied by the 

econometric model that allow this to vary temporally. The estimation results also 

revealed no evidence on increasing returns to scale or scope across models. According 

to the time-invariant estimators, there is no positive correlation between bank size and 

technical efficiencies, and neither exists such a relationship between size and scale 

efficiencies. We found that liquidity and market risk are deleterious to efficiency, 

which has implications for the argument that banks should be restricted to traditional 

banking activities in their zone of competence. The panel quantile regression results 

were generally consistent with the stochastic frontier estimation, albeit with estimates 

not varying greatly across quantiles. Furthermore, the implied efficiencies here are 

uniformly lower in the quantile regressions, than for the other time-invariant frontier 

estimators. 

This paper has both policy implications and also evaluates various econometric 

techniques as potentially valuable analytical tools for supervisors. First, our results 

highlight the importance of the prudential supervisory role in controlling the level of 

risk in the banking sector, as we have documented that the elevation in risk measures 

coupled with the growth of the sector has resulted in declining measures of efficiency, 

a result that is robust to several econometric specifications. The policy implication is 

that we may want a better capitalized and somewhat smaller banking system, as this is 

likely to imply a more efficiently functioning banking industry. Second, the finding 

that market and liquidity risk dominate the influence of credit risk implied in the 

Volcker Rule debate, that regulators may wish to seriously consider restricting banks 

from dangerous activities such as speculative proprietary trading, and rather focus on 

their core competency of making loans. There are several fruitful avenues of 
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extension for this research program. We may pursue alternative data-sets, such as 

other financial service types of firms (e.g., insurers, brokers), or data from other 

jurisdictions. We may expand our set of explanatory variables, with alternative 

controls (e.g., size, leverage, capitalization), or an expanded set of inputs (e.g., a 

measure of technological change.) Finally, we may expand our suite of alternative 

models, thereby seeking out further robust tools for the use by supervisors. 
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Appendix: 

Table 4: Stochastic Frontier Estimates for translog Distance Function 
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Table 5 : Panel Data Quantile Regression for translog Distance Function 
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